login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356265
Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n.
4
0, 1, 0, 1, 2, 0, 1, 8, 2, 0, 1, 21, 25, 2, 0, 1, 49, 152, 55, 2, 0, 1, 106, 697, 670, 117, 2, 0, 1, 223, 2756, 5493, 2509, 243, 2, 0, 1, 459, 9966, 36105, 33669, 8838, 497, 2, 0, 1, 936, 34095, 206698, 342710, 184305, 29721, 1007, 2, 0
OFFSET
1,5
LINKS
Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
EXAMPLE
Triangle T(n, k) starts: [Row sums]
[1] [0] [0]
[2] [1, 0] [1]
[3] [1, 2, 0] [3]
[4] [1, 8, 2, 0] [11]
[5] [1, 21, 25, 2, 0] [49]
[6] [1, 49, 152, 55, 2, 0] [259]
[7] [1, 106, 697, 670, 117, 2, 0] [1593]
[8] [1, 223, 2756, 5493, 2509, 243, 2, 0] [11227]
[9] [1, 459, 9966, 36105, 33669, 8838, 497, 2, 0] [89537]
PROG
(SageMath) # uses function A356264_row
@cache
def Pn(n: int, k: int) -> int:
if k == 0: return 0
if n == 0 or k == 1: return 1
return Pn(n, k - 1) + Pn(n - k, k) if k <= n else Pn(n, k - 1)
def reduce_parts(fun, n: int) -> list[int]:
funn: list[int] = fun(n)
return [sum(funn[Pn(n, k):Pn(n, k + 1)]) for k in range(n)]
def reduce_partition_triangle(fun, n: int) -> list[list[int]]:
return [reduce_parts(fun, k) for k in range(1, n)]
def A356265_row(n: int) -> list[int]:
return reduce_partition_triangle(A356264_row, n+1)[n-1]
for n in range(1, 8):
print(A356265_row(n))
CROSSREFS
Cf. A356264 (partitions), A356291 (row sums).
Sequence in context: A065329 A352772 A108998 * A309993 A248673 A278881
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 16 2022
STATUS
approved