login
A356268
a(n) = Sum_{k=0..n} binomial(2*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).
4
1, 3, 11, 62, 289, 1472, 7581, 38014, 184453, 918512, 4548393, 22077762, 107423503, 516720332, 2483445404, 11959145079, 57022343425, 270173627092, 1282971321633, 6047971597490, 28446033085527, 133714464665108, 625893086713686, 2919093380089383, 13596052503945537
OFFSET
0,2
FORMULA
a(n) ~ erfc(Pi/(4*sqrt(3))) * 2^(2*n - 3) * exp(Pi*sqrt(n/3) + Pi^2/48) / (3^(1/4) * n^(3/4)).
MATHEMATICA
Table[Sum[Binomial[2*n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 01 2022
STATUS
approved