Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 11 2022 01:53:16
%S 0,1,0,1,2,0,1,8,2,0,1,21,25,2,0,1,49,152,55,2,0,1,106,697,670,117,2,
%T 0,1,223,2756,5493,2509,243,2,0,1,459,9966,36105,33669,8838,497,2,0,1,
%U 936,34095,206698,342710,184305,29721,1007,2,0
%N Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n.
%H Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook.
%e Triangle T(n, k) starts: [Row sums]
%e [1] [0] [0]
%e [2] [1, 0] [1]
%e [3] [1, 2, 0] [3]
%e [4] [1, 8, 2, 0] [11]
%e [5] [1, 21, 25, 2, 0] [49]
%e [6] [1, 49, 152, 55, 2, 0] [259]
%e [7] [1, 106, 697, 670, 117, 2, 0] [1593]
%e [8] [1, 223, 2756, 5493, 2509, 243, 2, 0] [11227]
%e [9] [1, 459, 9966, 36105, 33669, 8838, 497, 2, 0] [89537]
%o (SageMath) # uses function A356264_row
%o @cache
%o def Pn(n: int, k: int) -> int:
%o if k == 0: return 0
%o if n == 0 or k == 1: return 1
%o return Pn(n, k - 1) + Pn(n - k, k) if k <= n else Pn(n, k - 1)
%o def reduce_parts(fun, n: int) -> list[int]:
%o funn: list[int] = fun(n)
%o return [sum(funn[Pn(n, k):Pn(n, k + 1)]) for k in range(n)]
%o def reduce_partition_triangle(fun, n: int) -> list[list[int]]:
%o return [reduce_parts(fun, k) for k in range(1, n)]
%o def A356265_row(n: int) -> list[int]:
%o return reduce_partition_triangle(A356264_row, n+1)[n-1]
%o for n in range(1, 8):
%o print(A356265_row(n))
%Y Cf. A356264 (partitions), A356291 (row sums).
%K nonn,tabl
%O 1,5
%A _Peter Luschny_, Aug 16 2022