login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356117
T(n, k) = [x^k] (1/2 - x)^(-n) - (1 - x)^(-n).
1
0, 1, 3, 3, 14, 45, 7, 45, 186, 630, 15, 124, 630, 2540, 8925, 31, 315, 1905, 8925, 35770, 128898, 63, 762, 5355, 28616, 128898, 515844, 1891890, 127, 1785, 14308, 85932, 429870, 1891890, 7568484, 28113228, 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725
OFFSET
0,3
FORMULA
T(n, k) = (2^(n+k) - 1) * binomial(n+k-1, k). - John Keith, Aug 23 2022
EXAMPLE
Triangle T(n, k) starts:
[0] 0;
[1] 1, 3;
[2] 3, 14, 45;
[3] 7, 45, 186, 630;
[4] 15, 124, 630, 2540, 8925;
[5] 31, 315, 1905, 8925, 35770, 128898;
[6] 63, 762, 5355, 28616, 128898, 515844, 1891890;
[7] 127, 1785, 14308, 85932, 429870, 1891890, 7568484, 28113228;
[8] 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725;
MAPLE
ser := series((1/2 - x)^(-n) - (1 - x)^(-n), x, 20):
seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9);
MATHEMATICA
row[n_] := CoefficientList[Series[(1/2 - x)^(-n) - (1 - x)^(-n), {x, 0, n}], x]; row[0] = {0}; Table[row[n], {n, 0, 8}] // Flatten (* Amiram Eldar, Aug 22 2022 *)
CROSSREFS
Cf. A000225 (column 0), A059672 (column 1), A059937 (column 2), A131568 (main diagonal), A134346, A327318.
Sequence in context: A063550 A367672 A298960 * A344213 A243545 A094152
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 22 2022
STATUS
approved