login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134346
Triangle read by rows: T(n,k) = (2^(n+1)-1)*binomial(n,k).
6
1, 3, 3, 7, 14, 7, 15, 45, 45, 15, 31, 124, 186, 124, 31, 63, 315, 630, 630, 315, 63, 127, 762, 1905, 2540, 1905, 762, 127, 255, 1785, 5355, 8925, 8925, 5355, 1785, 255, 511, 4088, 14308, 28616, 35770, 28616, 14308, 4088, 511
OFFSET
0,2
COMMENTS
Inverse binomial transform: A134347.
From Wolfdieter Lang, Jul 27 2022: (Start)
Also the triangle t with offset 1 and elements t(n, m) = T(n-1, m-1) read by rows, giving in row n >= 1 the sums of the entries of A356028 of like m.
Also triangle t with offset 1 read by rows, giving in row n >= 1 the sum of the numbers from 1, 2, ..., 2^n - 1 with binary weight m, for m = 1, 2, ..., n. [Observation by Kevin Ryde.] (End)
T(n,k) is the sum of the entries in the (k+2)-th column of the Christmas tree pattern (A367562) of order n+1. - Paolo Xausa, Dec 20 2023
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
FORMULA
T(n, m) = A000225(n+1)*A007318(n, m).
From Wolfdieter Lang, Aug 21 2022: (Start)
T(n, k) = 0 for n < k, T(n, 0) = 2^(n+1) - 1, and
T(n, k) = T(n-1, k) + T(n-1, k-1) + binomial(n, k)*2^n, or
T(n, k) = 2*(T(n-1, k) + T(n-1, k-1)) + binomial(n-1, k-1).
(Proof for T(n-1, m-1) = t(n, m), offset 1, by separating in the list of the binary code of the numbers 1, 2, ..., 2^n-1 of length n and weight m the sublists with first entry 1 and 0. The total number of elements of the list for n and m is binomial(n, m).) (End)
T(n, k) = [x^k] ((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1)). - Peter Luschny, Aug 22 2022
EXAMPLE
First few rows of the triangle:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 3 3
2: 7 14 7
3: 15 45 45 15
4: 31 124 186 124 31
5: 63 315 630 630 315 63
6: 127 762 1905 2540 1905 762 127
7: 255 1785 5355 8925 8925 5355 1785 255
8: 511 4088 14308 28616 35770 28616 14308 4088 511
9: 1023 9207 36828 85932 128898 128898 85932 36828 9207 1023
... reformatted by Wolfdieter Lang, Aug 21 2022
----------------------------------------------------------------------------------
T(3, 1) = 12 + 10 + 9 + 6 + 5 + 3 = 45. (From A356028 row n = 4, m = 2.)
Recurrences: T(4, 1) = 45 + 15 + 4*16 = 2*(45 + 15) +4 = 124. - Wolfdieter Lang, Jul 27 2022
MAPLE
A134346 := proc(n, k)
(2^(n+1)-1)*binomial(n, k) ;
end proc:
seq(seq( A134346(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Aug 15 2022
ser := series((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1), x, 10):
seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9); # Peter Luschny, Aug 22 2022
MATHEMATICA
A134346[n_, k_]:=(2^(n+1)-1)Binomial[n, k];
Table[A134346[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Dec 20 2023 *)
PROG
(PARI) T(n, k) = my(b=binomial(n, k)); b<<(n+1) - b; \\ Kevin Ryde, Aug 15 2022
CROSSREFS
Cf. A000225, A006516(n+1) (row sums), A124929, A134347, A356028, A356117.
Sequence in context: A095008 A214825 A230017 * A378959 A049772 A119470
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Oct 21 2007
EXTENSIONS
Name simplified by R. J. Mathar, Aug 15 2022
STATUS
approved