login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124929
Triangle read by rows: T(n,k) = (2^k-1)*binomial(n-1,k-1) (1<=k<=n).
4
1, 1, 3, 1, 6, 7, 1, 9, 21, 15, 1, 12, 42, 60, 31, 1, 15, 70, 150, 155, 63, 1, 18, 105, 300, 465, 378, 127, 1, 21, 147, 525, 1085, 1323, 889, 255, 1, 24, 196, 840, 2170, 3528, 3556, 2040, 511, 1, 27, 252, 1260, 3906, 7938, 10668, 9180, 4599, 1023
OFFSET
1,3
COMMENTS
Row sums give A027649.
EXAMPLE
First few rows of the triangle are:
1;
1, 3;
1, 6, 7;
1, 9, 21, 15;
1, 12, 42, 60, 31;
1, 15, 70, 150, 155, 63;
...
MAPLE
T:=(n, k)->(2^k-1)*binomial(n-1, k-1): for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Table[(2^k -1)*Binomial[n-1, k-1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jun 08 2017 *)
PROG
(PARI) for(n=1, 12, for(k=1, n, print1((2^k -1)*binomial(n-1, k-1), ", "))) \\ G. C. Greubel, Jun 08 2017
(Magma) [(2^k -1)*Binomial(n-1, k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
(Sage) [[(2^k -1)*binomial(n-1, k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> (2^k -1)*Binomial(n-1, k-1) ))); # G. C. Greubel, Nov 19 2019
CROSSREFS
Cf. A027649.
Sequence in context: A291217 A198614 A239385 * A208766 A259454 A209696
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 12 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved