login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = (2^k-1)*binomial(n-1,k-1) (1<=k<=n).
4

%I #18 Sep 08 2022 08:45:28

%S 1,1,3,1,6,7,1,9,21,15,1,12,42,60,31,1,15,70,150,155,63,1,18,105,300,

%T 465,378,127,1,21,147,525,1085,1323,889,255,1,24,196,840,2170,3528,

%U 3556,2040,511,1,27,252,1260,3906,7938,10668,9180,4599,1023

%N Triangle read by rows: T(n,k) = (2^k-1)*binomial(n-1,k-1) (1<=k<=n).

%C Row sums give A027649.

%H G. C. Greubel, <a href="/A124929/b124929.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%e First few rows of the triangle are:

%e 1;

%e 1, 3;

%e 1, 6, 7;

%e 1, 9, 21, 15;

%e 1, 12, 42, 60, 31;

%e 1, 15, 70, 150, 155, 63;

%e ...

%p T:=(n,k)->(2^k-1)*binomial(n-1,k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form

%t Table[(2^k -1)*Binomial[n-1, k-1], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jun 08 2017 *)

%o (PARI) for(n=1,12, for(k=1,n, print1((2^k -1)*binomial(n-1,k-1), ", "))) \\ _G. C. Greubel_, Jun 08 2017

%o (Magma) [(2^k -1)*Binomial(n-1,k-1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 19 2019

%o (Sage) [[(2^k -1)*binomial(n-1,k-1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Nov 19 2019

%o (GAP) Flat(List([1..12], n-> List([1..n], k-> (2^k -1)*Binomial(n-1,k-1) ))); # _G. C. Greubel_, Nov 19 2019

%Y Cf. A027649.

%K nonn,tabl

%O 1,3

%A _Gary W. Adamson_, Nov 12 2006

%E Edited by _N. J. A. Sloane_, Nov 29 2006