login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = (2^(n+1)-1)*binomial(n,k).
6

%I #60 Dec 20 2023 08:02:17

%S 1,3,3,7,14,7,15,45,45,15,31,124,186,124,31,63,315,630,630,315,63,127,

%T 762,1905,2540,1905,762,127,255,1785,5355,8925,8925,5355,1785,255,511,

%U 4088,14308,28616,35770,28616,14308,4088,511

%N Triangle read by rows: T(n,k) = (2^(n+1)-1)*binomial(n,k).

%C Inverse binomial transform: A134347.

%C From _Wolfdieter Lang_, Jul 27 2022: (Start)

%C Also the triangle t with offset 1 and elements t(n, m) = T(n-1, m-1) read by rows, giving in row n >= 1 the sums of the entries of A356028 of like m.

%C Also triangle t with offset 1 read by rows, giving in row n >= 1 the sum of the numbers from 1, 2, ..., 2^n - 1 with binary weight m, for m = 1, 2, ..., n. [Observation by _Kevin Ryde_.] (End)

%C T(n,k) is the sum of the entries in the (k+2)-th column of the Christmas tree pattern (A367562) of order n+1. - _Paolo Xausa_, Dec 20 2023

%H Paolo Xausa, <a href="/A134346/b134346.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of the triangle, flattened).

%F T(n, m) = A000225(n+1)*A007318(n, m).

%F From _Wolfdieter Lang_, Aug 21 2022: (Start)

%F T(n, k) = 0 for n < k, T(n, 0) = 2^(n+1) - 1, and

%F T(n, k) = T(n-1, k) + T(n-1, k-1) + binomial(n, k)*2^n, or

%F T(n, k) = 2*(T(n-1, k) + T(n-1, k-1)) + binomial(n-1, k-1).

%F (Proof for T(n-1, m-1) = t(n, m), offset 1, by separating in the list of the binary code of the numbers 1, 2, ..., 2^n-1 of length n and weight m the sublists with first entry 1 and 0. The total number of elements of the list for n and m is binomial(n, m).) (End)

%F T(n, k) = [x^k] ((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1)). - _Peter Luschny_, Aug 22 2022

%e First few rows of the triangle:

%e n\k 0 1 2 3 4 5 6 7 8 9 ...

%e 0: 1

%e 1: 3 3

%e 2: 7 14 7

%e 3: 15 45 45 15

%e 4: 31 124 186 124 31

%e 5: 63 315 630 630 315 63

%e 6: 127 762 1905 2540 1905 762 127

%e 7: 255 1785 5355 8925 8925 5355 1785 255

%e 8: 511 4088 14308 28616 35770 28616 14308 4088 511

%e 9: 1023 9207 36828 85932 128898 128898 85932 36828 9207 1023

%e ... reformatted by _Wolfdieter Lang_, Aug 21 2022

%e ----------------------------------------------------------------------------------

%e T(3, 1) = 12 + 10 + 9 + 6 + 5 + 3 = 45. (From A356028 row n = 4, m = 2.)

%e Recurrences: T(4, 1) = 45 + 15 + 4*16 = 2*(45 + 15) +4 = 124. - _Wolfdieter Lang_, Jul 27 2022

%p A134346 := proc(n,k)

%p (2^(n+1)-1)*binomial(n,k) ;

%p end proc:

%p seq(seq( A134346(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Aug 15 2022

%p ser := series((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1), x, 10):

%p seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9); # _Peter Luschny_, Aug 22 2022

%t A134346[n_,k_]:=(2^(n+1)-1)Binomial[n,k];

%t Table[A134346[n,k],{n,0,10},{k,0,n}] (* _Paolo Xausa_, Dec 20 2023 *)

%o (PARI) T(n,k) = my(b=binomial(n,k)); b<<(n+1) - b; \\ _Kevin Ryde_, Aug 15 2022

%Y Cf. A000225, A006516(n+1) (row sums), A124929, A134347, A356028, A356117.

%Y Cf. A367508, A367562.

%K nonn,tabl,easy

%O 0,2

%A _Gary W. Adamson_, Oct 21 2007

%E Name simplified by _R. J. Mathar_, Aug 15 2022