login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173075
T(n,k) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) for 0 < k < n with T(n,0) = T(n,n) = 1 and q = 1. Triangle read by rows.
7
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 12, 12, 5, 1, 1, 6, 18, 25, 18, 6, 1, 1, 7, 25, 44, 44, 25, 7, 1, 1, 8, 33, 70, 89, 70, 33, 8, 1, 1, 9, 42, 104, 160, 160, 104, 42, 9, 1, 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1
OFFSET
0,5
COMMENTS
Rows two through six appear in the table on p. 8 of Getzler. Cf. also A167763. - Tom Copeland, Jan 22 2020
The triangle sequences having the form T(n,k,p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,p) = 2^(n-2)*p^n + 2^n - (n-1) - (5/4)*[n=0] -(p/2)*[n=1]. - G. C. Greubel, Feb 12 2021
LINKS
FORMULA
T(n, k) = binomial(n, k) - 1 + binomial(n-2, k-1) for 0 < k < n.
T(n, 0) = T(n, n) = 1.
From G. C. Greubel, Feb 12 2021: (Start)
T(n, k, p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and p = 1.
Sum_{k=0..n} T(n, k, 1) = 2^(n-2) + 2^n - (n-1) - (5/4)*[n=0] -(1/2)*[n=1]. (End)
EXAMPLE
Triangle begins:
1,
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 12, 12, 5, 1;
1, 6, 18, 25, 18, 6, 1;
1, 7, 25, 44, 44, 25, 7, 1;
1, 8, 33, 70, 89, 70, 33, 8, 1;
1, 9, 42, 104, 160, 160, 104, 42, 9, 1;
1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1;
...
Row sums: {1, 2, 4, 8, 17, 36, 75, 154, 313, 632, 1271, ...}.
MATHEMATICA
T[n_, m_]:= If[m==0 || m==n, 1, Binomial[n, m] - 1 + Binomial[n-2, m-1]];
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
PROG
(PARI) T(n, k)={if(k<=0||k>=n, k==0||k==n, binomial(n, k) - 1 + binomial(n-2, k-1))} \\ Andrew Howroyd, Jan 22 2020
(Sage)
def T(n, k, p): return 1 if (k==0 or k==n) else binomial(n, k) + p^n*binomial(n-2, k-1) -1
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
(Magma)
T:= func< n, k, p | k eq 0 or k eq n select 1 else Binomial(n, k) + p^n*Binomial(n-2, k-1) -1 >;
[T(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
CROSSREFS
Cf. A132044 (q=0), this sequence (q=1), A173076 (q=2), A173077 (q=3).
Cf. A132044 (p=0), this sequence (p=1), A173046 (p=2), A173047 (p=3).
Cf. A167763.
Sequence in context: A050447 A248601 A167172 * A166293 A094525 A130671
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 09 2010
STATUS
approved