login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173078
a(n) = (5*2^n - 2*(-1)^n - 9)/3.
2
1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651, 27303, 54611, 109223, 218451, 436903, 873811, 1747623, 3495251, 6990503, 13981011, 27962023, 55924051, 111848103, 223696211, 447392423, 894784851, 1789569703, 3579139411
OFFSET
1,2
COMMENTS
The sequence and higher-order differences in subsequent rows are
1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651
2, 8, 12, 28, 52, 108, 212, 428, 852, 1708, 3412, 6828, 13652
6, 4, 16, 24, 56, 104, 216, 424, 856, 1704, 3416, 6824, 13656
-2, 12, 8, 32, 48, 112, 208, 432, 848, 1712, 3408, 6832, 13648
14, -4, 24, 16, 64, 96, 224, 416, 864, 1696, 3424, 6816, 13664
-18, 28, -8, 48, 32, 128, 192, 448, 832, 1728, 3392, 6848, 1363
46, -36, 56, -16, 96, 64, 256, 384, 896, 1664, 3456, 6784, 1369
The main diagonal 1,8,16,... is essentially A000079.
A subdiagonal is 2, 4, 8, 16, ... A155559.
Other diagonals are 3, 12, 24, 48, ... = 3*A151821, 6, 12, 24, ... = A082505 and -2, -4, -8, -16, ..., a negated variant of A171449.
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - 2*a(n) = A010686(n-1).
a(n) = A084214(n+1) - 3.
G.f.: x*(1 + x + 4*x^2) / ( (1-x)*(1-2*x)*(1+x) ).
a(2n+3) - a(2n+1) = 10*A000302(n).
E.g.f.: (-2*exp(-x) + 6 - 9*exp(x) + 5*exp(2*x))/3. - G. C. Greubel, Dec 01 2019
MAPLE
seq( (5*2^n -2*(-1)^n -9)/3, n=1..40); # G. C. Greubel, Dec 01 2019
MATHEMATICA
LinearRecurrence[{2, 1, -2}, {1, 3, 11}, 40] (* Harvey P. Dale, Oct 01 2018 *)
PROG
(Magma) [5*2^n/3-2*(-1)^n/3-3: n in [1..40]]; // Vincenzo Librandi, Aug 05 2011
(PARI) vector(40, n, (5*2^n - 2*(-1)^n - 9)/3) \\ G. C. Greubel, Dec 01 2019
(Sage) [(5*2^n - 2*(-1)^n - 9)/3 for n in (1..40)] # G. C. Greubel, Dec 01 2019
(GAP) List([1..40], n-> (5*2^n - 2*(-1)^n - 9)/3); # G. C. Greubel, Dec 01 2019
CROSSREFS
Sequence in context: A145473 A335677 A248348 * A128928 A289888 A145477
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 09 2010
STATUS
approved