login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084214 Inverse binomial transform of a math magic problem. 12
1, 1, 4, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A060816.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,2)

FORMULA

a(n) = (5*2^n - 3*0^n + 4*(-1)^n)/6.

G.f.: (1+x^2)/((1+x)*(1-2*x)).

E.g.f.: (5*exp(2*x) - 3*exp(0) + 4*exp(-x))/6.

From Paul Barry, May 04 2004: (Start)

The binomial transform of A084214(n+1) is A020989(n).

a(n) = A001045(n-1) + A001045(n+1) - 0^n/2. (End)

a(n) = sum_{k=0..n} A001045(n+1)C(1, k/2)(1+(-1)^k)/2}. - Paul Barry, Oct 15 2004

a(n) = a(n-1) + 2*a(n-2) for n > 2. - Klaus Brockhaus, Dec 01 2009

From Yuchun Ji, Mar 18 2019: (Start)

a(n+1) = Sum_{i=0..n} a(i) + 1 - (-1)^n, a(0)=1.

a(n) = A000975(n-3)*10 + 5 + (-1)^(n-3), a(0)=1, a(1)=1, a(2)=4. (End)

MAPLE

a[0]:=1:a[1]:=4:for n from 2 to 50 do a[n]:=a[n-1]+2*a[n-2]od: seq(a[n], n=-1..31); # Zerinvary Lajos, Dec 15 2008

MATHEMATICA

f[n_]:=2/(n+1); x=3; Table[x=f[x]; Numerator[x], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *)

PROG

(MAGMA) [(5*2^n-3*0^n+4*(-1)^n)/6: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011

(Haskell)

a084214 n = a084214_list !! n

a084214_list = 1 : xs where

   xs = 1 : 4 : zipWith (+) (map (* 2) xs) (tail xs)

-- Reinhard Zumkeller, Aug 01 2011

CROSSREFS

Cf. A048654.

Sequence in context: A192782 A306742 A188576 * A030138 A009849 A303041

Adjacent sequences:  A084211 A084212 A084213 * A084215 A084216 A084217

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 03:25 EDT 2020. Contains 335503 sequences. (Running on oeis4.)