OFFSET
1,2
COMMENTS
It appears that this gives the number of Ramanujan primes < 10^n that are the lesser prime in a twin prime pair. Equivalently, this sequence also gives the number of Ramanujan primes p with p+2 also prime less than 10^n.
It appears that no upper twin prime is a Ramanujan prime without the corresponding lower twin prime also being a Ramanujan prime.
This is proved in Section 4 of "Ramanujan Primes: Bounds, Runs, Twins, and Gaps".
LINKS
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
MATHEMATICA
nn=50000; t=Table[0, {nn}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<nn, t[[s+1]]=k], {k, Prime[3*nn]}]; t=t+1; cnt=0; i=1; Table[While[t[[i]]<10^n, If[PrimeQ[t[[i]]+2], cnt++]; i++]; cnt, {n, Floor[Log[10, t[[-1]]]]}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
T. D. Noe, Nov 22 2010
EXTENSIONS
a(10)-a(11) from Dana Jacobsen, Apr 29 2015
STATUS
approved