login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082505 a(n) = sum of (n-1)-th row terms of triangle A134059. 13
0, 1, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the least number x such that gcd(2^x, x-phi(x)) = 2^n. If cototient is replaced by totient, analogous values are different: A053576.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (2).

FORMULA

a(n) = A007283(n-1) for n>1, with a(0) = 0 and a(1) = 1.

G.f.: x * (1 + 4*x) / (1 - 2*x) = x / (1 - 6*x / (1 + 4*x)). - Michael Somos, Jun 15 2012

Starting (1, 6, 12, 24, 48, ...) = binomial transform of [1, 5, 1, 5, 1, 5, ...]. - Gary W. Adamson, Nov 18 2007

a(n+1) = Sum_{k=0..n} A109466(n,k)*A144706(k). - Philippe Deléham, Oct 30 2008

a(n) = (-6*n + 16) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011

E.g.f.: (-3 - 4*x + 3*exp(2*x))/2. - Ilya Gutkovskiy, Jul 04 2016

a(n) = 3*2^(n-1) - (3/2)*[n=0] - 2*[n=1]. - G. C. Greubel, Apr 27 2021

EXAMPLE

G.f. = x + 6*x^2 + 12*x^3 + 24*x^4 + 48*x^5 + 96*x^6 + 192*x^7 + 384*x^8 + ...

MAPLE

0, 1, seq(3*2^(n-1), n=2..40); # G. C. Greubel, Apr 27 2021

MATHEMATICA

{0}~Join~Map[Total, {{1}}~Join~Table[3 Binomial[n, k], {n, 30}, {k, 0, n}]] (* Michael De Vlieger, Jul 03 2016, after Harvey P. Dale at A134059 *)

Table[3*2^(n-1) -(3/2)*Boole[n==0] -2*Boole[n==1], {n, 0, 40}] (* G. C. Greubel, Apr 27 2021 *)

PROG

(Magma) [0, 1] cat [ &+[ 3*Binomial(n, k): k in [0..n] ]: n in [1..30] ]; // Klaus Brockhaus, Dec 02 2009

(PARI) {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-6*k + 16) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */

(PARI) a(n)=if(n<2, n, 3<<(n-1)) \\ Charles R Greathouse IV, Jun 16 2012

(Sage) [0, 1]+[3*2^(n-1) for n in (2..40)] # G. C. Greubel, Apr 27 2021

CROSSREFS

Cf. A000010, A007283, A009195, A050339, A134059.

Sequence in context: A160728 A332043 A229926 * A091629 A089529 A300915

Adjacent sequences: A082502 A082503 A082504 * A082506 A082507 A082508

KEYWORD

nonn,easy

AUTHOR

Labos Elemer, Apr 28 2003

EXTENSIONS

More terms from Klaus Brockhaus, Dec 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 08:47 EST 2022. Contains 358422 sequences. (Running on oeis4.)