login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229926
Integer areas of the integer-sided triangles T(n) defined by the property: a(0) = 6 ; for n > 0, a(n) is the area A where the smallest side of T(n) is the greatest side of T(n-1).
0
6, 12, 24, 48, 96, 192, 384, 768, 1080, 1080, 3888, 4320, 15360, 69120, 69120, 248832, 349920, 349920, 1259712, 342144, 7226112, 10782720, 17031168, 18095616, 19226592, 21660210, 30270240, 44706816, 81544320, 128798208
OFFSET
0,1
COMMENTS
Subsequence of A188158.
The sequence of the common sides is {5, 6, 10, 12, 20, 24, 40, 48, 51, 90, 108, 208, 384, 408, 720, 864, 918, 1620, 1944, 3880, 4656, 6240, 6336, ...}
a(n) = 6*2^n for n = 0, 1, 2,..., 7, and then this property disappears.
The area is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where the semiperimeter s = (a + b + c)/2.
The following table gives the first values (n, A, a, b, c) where a <= b <= c are the integer sides of the triangles.
+----+------+-----+-----+-----+
| n | A | a | b | c |
+----+------+-----+-----+-----+
| 0 | 6 | 3 | 4 | 5 |
| 1 | 12 | 5 | 5 | 6 |
| 2 | 24 | 6 | 8 | 10 |
| 3 | 48 | 10 | 10 | 12 |
| 4 | 96 | 12 | 16 | 20 |
| 5 | 192 | 20 | 20 | 24 |
| 6 | 384 | 24 | 32 | 40 |
| 7 | 768 | 40 | 40 | 48 |
| 8 | 1080 | 48 | 51 | 51 |
| 9 | 1080 | 51 | 51 | 90 |
| 10 | 3888 | 90 | 90 | 108 |
| 11 | 4320 | 108 | 116 | 208 |
+----+------+-----+-----+-----+
MAPLE
with(numtheory):nn:=15000:a:=5: printf ( "%d %d %d %d %d \n", 1, 6, 3, 4, a):
for n from 2 to 40 do:
ii:=0:
for b from a to nn while(ii=0) do:
for c from b to nn while(ii=0) do:
p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):
if x>0
then
x0:= sqrt(x):
else
fi:
if x0=floor(x0)
then
ii:=1:printf ( "%d %d %d %d %d \n", n, x0, a, b, c):
a:=max(b, c):
else
fi:
od:
od:
od:
CROSSREFS
Cf. A188158.
Sequence in context: A160728 A332043 A362487 * A082505 A091629 A089529
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 03 2013
STATUS
approved