OFFSET
1,1
COMMENTS
Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Tanya Khovanova, Recursive Sequences
Carlos Rivera, Puzzle 251, Pointer primes, The Prime Puzzles and Problems Connection.
Index entries for linear recurrences with constant coefficients, signature (2).
FORMULA
a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023
MATHEMATICA
3*2^Range[1, 60] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
PROG
(Magma) [3*2^n : n in [1..40]]; // Wesley Ivan Hurt, Jul 17 2020
(SageMath) [3*2^n for n in range(1, 51)] # G. C. Greubel, Jan 05 2023
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Enoch Haga, Jan 24 2004
EXTENSIONS
Edited and extended by Ray Chandler, Feb 07 2004
STATUS
approved