login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257548
a(1) = 1, a(2) = 2, a(3) = 5, a(4) = 8 and a(5) = 15, a(n) = Sum_{j=1..n-1} a(j).
6
1, 2, 5, 8, 15, 31, 62, 124, 248, 496, 992, 1984, 3968, 7936, 15872, 31744, 63488, 126976, 253952, 507904, 1015808, 2031616, 4063232, 8126464, 16252928, 32505856, 65011712, 130023424, 260046848, 520093696, 1040187392, 2080374784, 4160749568, 8321499136
OFFSET
1,2
COMMENTS
31 is the only prime after 5 (the remaining terms are even).
FORMULA
For n>=6, a(n) = 31*2^(n-6).
For n>=6, a(n) = A206371(n-6) - 1.
G.f.: x*(1+x^2-2*x^3-x^4+x^5)/(1-2*x). - Robert G. Wilson v, May 05 2015
E.g.f.: (31/64)*exp(2*x) + x/32 + x^2/32 + 3*x^3/16 + x^4/96 - x^5/240. - G. C. Greubel, Jan 05 2023
MATHEMATICA
Join[{1, 2, 5, 8, 15}, Table[31*2^(n-6), {n, 6, 50}]] (* Vincenzo Librandi, May 03 2015 *)
CoefficientList[ Series[(x^5 -x^4 -2x^3 +x^2 +1)/(1 -2x), {x, 0, 33}], x] (* Robert G. Wilson v, May 05 2015 *)
Join[{1, 2, 5, 8, 15}, NestList[2#&, 31, 30]] (* Harvey P. Dale, Oct 09 2018 *)
PROG
(Magma) [1, 2, 5, 8] cat [31*2^n div 64: n in [5..50]]; // Vincenzo Librandi, May 03 2015
(SageMath)
def A257548(n): return (4*fibonacci(n+1) -3 -(-1)^n)/2 if (n<6) else 31*2^(n-6)
[A257548(n) for n in range(1, 51)] # G. C. Greubel, Jan 05 2023
CROSSREFS
Cf. A206371.
Sequence in context: A081660 A285291 A065618 * A186413 A080084 A065093
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Apr 29 2015
STATUS
approved