login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Integer areas of the integer-sided triangles T(n) defined by the property: a(0) = 6 ; for n > 0, a(n) is the area A where the smallest side of T(n) is the greatest side of T(n-1).
0

%I #13 Mar 10 2017 21:43:32

%S 6,12,24,48,96,192,384,768,1080,1080,3888,4320,15360,69120,69120,

%T 248832,349920,349920,1259712,342144,7226112,10782720,17031168,

%U 18095616,19226592,21660210,30270240,44706816,81544320,128798208

%N Integer areas of the integer-sided triangles T(n) defined by the property: a(0) = 6 ; for n > 0, a(n) is the area A where the smallest side of T(n) is the greatest side of T(n-1).

%C Subsequence of A188158.

%C The sequence of the common sides is {5, 6, 10, 12, 20, 24, 40, 48, 51, 90, 108, 208, 384, 408, 720, 864, 918, 1620, 1944, 3880, 4656, 6240, 6336, ...}

%C a(n) = 6*2^n for n = 0, 1, 2,..., 7, and then this property disappears.

%C The area is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where the semiperimeter s = (a + b + c)/2.

%C The following table gives the first values (n, A, a, b, c) where a <= b <= c are the integer sides of the triangles.

%C +----+------+-----+-----+-----+

%C | n | A | a | b | c |

%C +----+------+-----+-----+-----+

%C | 0 | 6 | 3 | 4 | 5 |

%C | 1 | 12 | 5 | 5 | 6 |

%C | 2 | 24 | 6 | 8 | 10 |

%C | 3 | 48 | 10 | 10 | 12 |

%C | 4 | 96 | 12 | 16 | 20 |

%C | 5 | 192 | 20 | 20 | 24 |

%C | 6 | 384 | 24 | 32 | 40 |

%C | 7 | 768 | 40 | 40 | 48 |

%C | 8 | 1080 | 48 | 51 | 51 |

%C | 9 | 1080 | 51 | 51 | 90 |

%C | 10 | 3888 | 90 | 90 | 108 |

%C | 11 | 4320 | 108 | 116 | 208 |

%C +----+------+-----+-----+-----+

%p with(numtheory):nn:=15000:a:=5: printf ( "%d %d %d %d %d \n",1,6,3,4,a):

%p for n from 2 to 40 do:

%p ii:=0:

%p for b from a to nn while(ii=0) do:

%p for c from b to nn while(ii=0) do:

%p p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):

%p if x>0

%p then

%p x0:= sqrt(x):

%p else

%p fi:

%p if x0=floor(x0)

%p then

%p ii:=1:printf ( "%d %d %d %d %d \n",n,x0,a,b,c):

%p a:=max(b,c):

%p else

%p fi:

%p od:

%p od:

%p od:

%Y Cf. A188158.

%K nonn

%O 0,1

%A _Michel Lagneau_, Oct 03 2013