login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integer areas of the integer-sided triangles T(n) defined by the property: a(0) = 6 ; for n > 0, a(n) is the area A where the smallest side of T(n) is the greatest side of T(n-1).
0

%I #13 Mar 10 2017 21:43:32

%S 6,12,24,48,96,192,384,768,1080,1080,3888,4320,15360,69120,69120,

%T 248832,349920,349920,1259712,342144,7226112,10782720,17031168,

%U 18095616,19226592,21660210,30270240,44706816,81544320,128798208

%N Integer areas of the integer-sided triangles T(n) defined by the property: a(0) = 6 ; for n > 0, a(n) is the area A where the smallest side of T(n) is the greatest side of T(n-1).

%C Subsequence of A188158.

%C The sequence of the common sides is {5, 6, 10, 12, 20, 24, 40, 48, 51, 90, 108, 208, 384, 408, 720, 864, 918, 1620, 1944, 3880, 4656, 6240, 6336, ...}

%C a(n) = 6*2^n for n = 0, 1, 2,..., 7, and then this property disappears.

%C The area is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where the semiperimeter s = (a + b + c)/2.

%C The following table gives the first values (n, A, a, b, c) where a <= b <= c are the integer sides of the triangles.

%C +----+------+-----+-----+-----+

%C | n | A | a | b | c |

%C +----+------+-----+-----+-----+

%C | 0 | 6 | 3 | 4 | 5 |

%C | 1 | 12 | 5 | 5 | 6 |

%C | 2 | 24 | 6 | 8 | 10 |

%C | 3 | 48 | 10 | 10 | 12 |

%C | 4 | 96 | 12 | 16 | 20 |

%C | 5 | 192 | 20 | 20 | 24 |

%C | 6 | 384 | 24 | 32 | 40 |

%C | 7 | 768 | 40 | 40 | 48 |

%C | 8 | 1080 | 48 | 51 | 51 |

%C | 9 | 1080 | 51 | 51 | 90 |

%C | 10 | 3888 | 90 | 90 | 108 |

%C | 11 | 4320 | 108 | 116 | 208 |

%C +----+------+-----+-----+-----+

%p with(numtheory):nn:=15000:a:=5: printf ( "%d %d %d %d %d \n",1,6,3,4,a):

%p for n from 2 to 40 do:

%p ii:=0:

%p for b from a to nn while(ii=0) do:

%p for c from b to nn while(ii=0) do:

%p p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):

%p if x>0

%p then

%p x0:= sqrt(x):

%p else

%p fi:

%p if x0=floor(x0)

%p then

%p ii:=1:printf ( "%d %d %d %d %d \n",n,x0,a,b,c):

%p a:=max(b,c):

%p else

%p fi:

%p od:

%p od:

%p od:

%Y Cf. A188158.

%K nonn

%O 0,1

%A _Michel Lagneau_, Oct 03 2013