Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 12 2021 18:04:47
%S 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,12,12,5,1,1,6,18,25,18,6,1,1,7,25,
%T 44,44,25,7,1,1,8,33,70,89,70,33,8,1,1,9,42,104,160,160,104,42,9,1,1,
%U 10,52,147,265,321,265,147,52,10,1
%N T(n,k) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) for 0 < k < n with T(n,0) = T(n,n) = 1 and q = 1. Triangle read by rows.
%C Rows two through six appear in the table on p. 8 of Getzler. Cf. also A167763. - _Tom Copeland_, Jan 22 2020
%C The triangle sequences having the form T(n,k,p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,p) = 2^(n-2)*p^n + 2^n - (n-1) - (5/4)*[n=0] -(p/2)*[n=1]. - _G. C. Greubel_, Feb 12 2021
%H G. C. Greubel, <a href="/A173075/b173075.txt">Rows n = 0..100 of the triangle, flattened</a>
%H E. Getzler, <a href="http://arxiv.org/abs/alg-geom/9612005">The semi-classical approximation for modular operads</a>, arXiv:alg-geom/9612005, 1996.
%F T(n, k) = binomial(n, k) - 1 + binomial(n-2, k-1) for 0 < k < n.
%F T(n, 0) = T(n, n) = 1.
%F From _G. C. Greubel_, Feb 12 2021: (Start)
%F T(n, k, p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and p = 1.
%F Sum_{k=0..n} T(n, k, 1) = 2^(n-2) + 2^n - (n-1) - (5/4)*[n=0] -(1/2)*[n=1]. (End)
%e Triangle begins:
%e 1,
%e 1, 1;
%e 1, 2, 1;
%e 1, 3, 3, 1;
%e 1, 4, 7, 4, 1;
%e 1, 5, 12, 12, 5, 1;
%e 1, 6, 18, 25, 18, 6, 1;
%e 1, 7, 25, 44, 44, 25, 7, 1;
%e 1, 8, 33, 70, 89, 70, 33, 8, 1;
%e 1, 9, 42, 104, 160, 160, 104, 42, 9, 1;
%e 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1;
%e ...
%e Row sums: {1, 2, 4, 8, 17, 36, 75, 154, 313, 632, 1271, ...}.
%t T[n_, m_]:= If[m==0 || m==n, 1, Binomial[n, m] - 1 + Binomial[n-2, m-1]];
%t Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
%o (PARI) T(n,k)={if(k<=0||k>=n, k==0||k==n, binomial(n,k) - 1 + binomial(n-2, k-1))} \\ _Andrew Howroyd_, Jan 22 2020
%o (Sage)
%o def T(n,k,p): return 1 if (k==0 or k==n) else binomial(n,k) + p^n*binomial(n-2,k-1) -1
%o flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 12 2021
%o (Magma)
%o T:= func< n,k,p | k eq 0 or k eq n select 1 else Binomial(n,k) + p^n*Binomial(n-2,k-1) -1 >;
%o [T(n,k,1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 12 2021
%Y Cf. A132044 (q=0), this sequence (q=1), A173076 (q=2), A173077 (q=3).
%Y Cf. A132044 (p=0), this sequence (p=1), A173046 (p=2), A173047 (p=3).
%Y Cf. A167763.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Feb 09 2010