OFFSET
0,8
COMMENTS
See A118340 for definition of pendular triangles and pendular sums.
The last five rows in the example section appear in the table on p. 8 of Getzler. Cf. also A173075. - Tom Copeland, Jan 22 2020
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
E. Getzler, The semi-classical approximation for modular operads, arXiv:alg-geom/9612005, 1996.
FORMULA
T(2n+m) = [A001764^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A001764.
If n > 2k, T(n,k) = binomial(n+k+1,k)*(n-2k+1)/(n+k+1), else T(n,k) = T(n,n-1-k), with conditions: T(n,0)=1 for n>=0 and T(n,n)=0 for n > 0. - Paul D. Hanna, Nov 12 2009
Sum_{k=0..n} T(n, k, p=0) = A093951(n). - G. C. Greubel, Feb 17 2021
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 0;
1, 4, 7, 4, 1, 0;
1, 5, 12, 12, 5, 1, 0; ...
MATHEMATICA
T[n_, k_, p_]:= T[n, k, p] = If[n<k || k<0, 0, If[k==0, 1, If[k==n, 0, If[n<=2*k, T[n, n-k-1, p] + p*T[n-1, k, p], T[n, n-k, p] + T[n-1, k, p] ]]]];
Table[T[n, k, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
PROG
(PARI) {T(n, k)=if(k==0, 1, if(n==k, 0, if(n>2*k, binomial(n+k+1, k)*(n-2*k+1)/(n+k+1), T(n, n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
(Sage)
@CachedFunction
def T(n, k, p):
if (k<0 or n<k): return 0
elif (k==0): return 1
elif (k==n): return 0
elif (n>2*k): return T(n, n-k, p) + T(n-1, k, p)
else: return T(n, n-k-1, p) + p*T(n-1, k, p)
flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
(Magma)
function T(n, k, p)
if k lt 0 or n lt k then return 0;
elif k eq 0 then return 1;
elif k eq n then return 0;
elif n gt 2*k then return T(n, n-k, p) + T(n-1, k, p);
else return T(n, n-k-1, p) + p*T(n-1, k, p);
end if;
return T;
end function;
[T(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 11 2009
STATUS
approved