login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118345
Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 2*T(n-1,k), for n>=k>=0, with T(n,0) = 1 and T(n,n) = 0^n.
10
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 18, 30, 7, 1, 0, 1, 6, 26, 70, 40, 8, 1, 0, 1, 7, 35, 121, 201, 51, 9, 1, 0, 1, 8, 45, 184, 487, 286, 63, 10, 1, 0, 1, 9, 56, 260, 873, 1445, 386, 76, 11, 1, 0, 1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0
OFFSET
0,8
COMMENTS
See A118340 for definition of pendular triangles and pendular sums.
FORMULA
T(2*n+m,n) = [A118346^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A118346.
EXAMPLE
Row 6 equals the pendular sums of row 5:
[1, 4, 11, 6, 1, 0], where the pendular sums proceed as follows:
[1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
[1, __, __, __, __, 1]: T(6,5) = T(6,0) + 2*T(5,5) = 1 + 2*0 = 1;
[1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
[1, 5, __, __, 7, 1]: T(6,4) = T(6,1) + 2*T(5,4) = 5 + 2*1 = 7;
[1, 5, 18, __, 7, 1]: T(6,2) = T(6,4) + T(5,2) = 7 + 11 = 18;
[1, 5, 18, 30, 7, 1]: T(6,3) = T(6,2) + 2*T(5,3) = 18 + 2*6 = 30;
[1, 5, 18, 30, 7, 1, 0] finally, append a zero to obtain row 6.
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 5, 1, 0;
1, 4, 11, 6, 1, 0;
1, 5, 18, 30, 7, 1, 0;
1, 6, 26, 70, 40, 8, 1, 0;
1, 7, 35, 121, 201, 51, 9, 1, 0;
1, 8, 45, 184, 487, 286, 63, 10, 1, 0;
1, 9, 56, 260, 873, 1445, 386, 76, 11, 1, 0;
1, 10, 68, 350, 1375, 3592, 2147, 502, 90, 12, 1, 0; ...
Central terms are T(2*n,n) = A118346(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = A118347(n) = [A118346^2](n),
T(2*n+2,n) = A118348(n) = [A118346^3](n).
MATHEMATICA
T[n_, k_, p_]:= T[n, k, p] = If[n<k || k<0, 0, If[k==0, 1, If[k==n, 0, If[n<=2*k, T[n, n-k-1, p] + p*T[n-1, k, p], T[n, n-k, p] + T[n-1, k, p] ]]]];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(k==0, 1, if(n==k, 0, if(n>2*k, T(n, n-k)+T(n-1, k), T(n, n-1-k)+2*T(n-1, k)))))
(Sage)
@CachedFunction
def T(n, k, p):
if (k<0 or n<k): return 0
elif (k==0): return 1
elif (k==n): return 0
elif (n>2*k): return T(n, n-k, p) + T(n-1, k, p)
else: return T(n, n-k-1, p) + p*T(n-1, k, p)
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
(Magma)
function T(n, k, p)
if k lt 0 or n lt k then return 0;
elif k eq 0 then return 1;
elif k eq n then return 0;
elif n gt 2*k then return T(n, n-k, p) + T(n-1, k, p);
else return T(n, n-k-1, p) + p*T(n-1, k, p);
end if;
return T;
end function;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
CROSSREFS
Cf. A167763 (p=0), A118340 (p=1), this sequence (p=2), A118350 (p=3).
Sequence in context: A322267 A286933 A295860 * A292804 A118350 A361950
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 26 2006
STATUS
approved