login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118343
Triangle, read by rows, where diagonals are successive self-convolutions of A108447.
4
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
OFFSET
0,8
COMMENTS
A108447 equals the central terms of pendular triangle A118340 and the diagonals of this triangle form the semi-diagonals of the triangle A118340. Row sums equal A054727, the number of forests of rooted trees with n nodes on a circle without crossing edges.
FORMULA
Since g.f. G=G(x) of A108447 satisfies: G = 1 - x*G + x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [2*T(n-1+j,k-j) - T(n-2+j,k-j)] for n>k>=0.
Sum_{k=0..n} T(n,k) = [n=0] + A054727(n) = [n=0] + Sum_{j=1..n} binomial(n, j-1)*binomial(3*n-2*j-1, n-j)/(2*n-j). - G. C. Greubel, Mar 17 2021
EXAMPLE
Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3)
or 837 = 519 - 132 + 190 + 260.
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 4, 0;
1, 3, 9, 20, 0;
1, 4, 15, 48, 113, 0;
1, 5, 22, 85, 282, 688, 0;
1, 6, 30, 132, 519, 1762, 4404, 0;
1, 7, 39, 190, 837, 3330, 11488, 29219, 0;
1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0;
1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>n then 0;
elif k=0 then 1;
elif k=n then 0;
else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1);
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
PROG
(PARI) {T(n, k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k), k)}
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0): return 1
elif (k==n): return 0
else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021
CROSSREFS
Cf. A054727 (row sums), A108447, A118340.
Sequence in context: A173004 A378323 A378290 * A309148 A351761 A226031
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 26 2006
STATUS
approved