login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173004
Antidiagonal triangle sequence based on recursion: f(n,a)=a*f(n-1,a)+n*f(n-2,a)
0
0, 0, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 7, 8, 0, 1, 4, 12, 22, 28, 0, 1, 5, 19, 48, 79, 76, 0, 1, 6, 28, 92, 204, 290, 272, 0, 1, 7, 39, 160, 463, 900, 1133, 880, 0, 1, 8, 52, 258, 940, 2404, 4128, 4586, 3328
OFFSET
0,9
COMMENTS
Row sums are:
{0, 1, 2, 7, 19, 67, 228, 893, 3583, 15705,...}.
FORMULA
f(n,a)=a*f(n-1,a)+n*f(n-2,a);
t(n,m)=antidiagonal(f(n,a))
EXAMPLE
{0},
{0, 1},
{0, 1, 1},
{0, 1, 2, 4},
{0, 1, 3, 7, 8},
{0, 1, 4, 12, 22, 28},
{0, 1, 5, 19, 48, 79, 76},
{0, 1, 6, 28, 92, 204, 290, 272},
{0, 1, 7, 39, 160, 463, 900, 1133, 880},
{0, 1, 8, 52, 258, 940, 2404, 4128, 4586, 3328}
MATHEMATICA
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = a*f[n - 1, a] + n*f[n - 2, a];
m1 = Table[f[n, a], {n, 0, 10}, {a, 1, 11}];
Table[Table[m1[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A083741 A258761 A256245 * A378323 A378290 A118343
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 07 2010
STATUS
approved