login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258761
Decimal expansion of Ls_5(Pi/3), the value of the 5th basic generalized log-sine integral at Pi/3 (negated).
4
2, 4, 0, 1, 2, 5, 3, 3, 1, 2, 5, 5, 1, 6, 9, 1, 4, 6, 1, 5, 0, 1, 5, 7, 1, 3, 9, 6, 3, 6, 3, 1, 6, 2, 6, 7, 9, 5, 0, 2, 8, 8, 4, 8, 4, 1, 0, 6, 4, 6, 3, 1, 5, 0, 2, 1, 9, 0, 1, 6, 2, 0, 7, 8, 2, 3, 3, 9, 2, 9, 9, 8, 2, 1, 7, 6, 3, 6, 8, 1, 4, 4, 4, 7, 2, 8, 9, 5, 8, 5, 8, 6, 4, 9, 1, 9, 0, 0, 1, 6, 3, 5, 2
OFFSET
2,1
FORMULA
-Integral_{0..Pi/3} log(2*sin(x/2))^4 dx = -1543*Pi^5/19440 + 6*Gl_{4, 1}(Pi/3), where Gl is the multiple Glaisher function.
Also equals -24 * 6F5(1/2,1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2,3/2; 1/4) (with 6F5 the hypergeometric function).
EXAMPLE
-24.01253312551691461501571396363162679502884841064631502190162...
MATHEMATICA
RealDigits[-24*HypergeometricPFQ[Table[1/2, {6}], Table[3/2, {5}], 1/4], 10, 103] // First
CROSSREFS
Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).
Sequence in context: A309635 A130659 A083741 * A256245 A173004 A378323
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved