login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054727 Number of forests of rooted trees with n nodes on a circle without crossing edges. 7
1, 2, 7, 33, 181, 1083, 6854, 45111, 305629, 2117283, 14929212, 106790500, 773035602, 5652275723, 41683912721, 309691336359, 2315772552485, 17415395593371, 131632335068744, 999423449413828, 7618960581522348, 58295017292748756, 447517868947619432, 3445923223190363608 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.

F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).

Source

Philippe Flajolet, Enumeration of planar configurations in computational geometry

P. Flajolet and M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math. 204 (1999), 203-229.

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 486, 502

Samuele Giraudo, Combalgebraic structures on decorated cliques, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8.

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.

FORMULA

a(n) = Sum_{j=1..n} binomial(n, j-1) * binomial(3*n-2*j-1, n-j) / (2*n - j).

G.f. A(x) satisfies 2*A(x)^2=x*(1-sqrt(1-4*A(x)))*(1-A(x)). - Vladimir Kruchinin, Nov 25 2011

From Peter Bala, Nov 07 2015: (Start)

O.g.f. A(x) = revert(x/((1 + x)*C(x))), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108.

Row sums of A094021. (End)

Conjecture: -2(37*n-80) *(n-1) *(2*n-1) *a(n) +2*(592*n^3-3056*n^2+5045*n-2665) *a(n-1) +2*(148*n^3-986*n^2+2021*n-1255) *a(n-2) -5*(n-5) *(n-2) *(37*n-43) *a(n-3)=0. - R. J. Mathar, Apr 30 2018

a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 8.2246915409778560686084627753... is the real root of the equation 5 - 8*d - 32*d^2 + 4*d^3 = 0 and c = 0.07465927842190452347018812862935237... is the positive real root of the equation -125 + 22376*c^2 + 8880*c^4 + 592*c^6 = 0. - Vaclav Kotesovec, Apr 30 2018

MAPLE

ZZ:=[F, {F=Union(Epsilon, ZB), ZB=Prod(Z1, P), P=Sequence(B), B=Prod(P, Z1, P), Z1=Prod(Z, F)}, unlabeled]: seq(count(ZZ, size=n), n=1..20); # Zerinvary Lajos, Apr 22 2007

MATHEMATICA

a[n_] := (3*n-3)!/((n-1)!*(2*n-1)!)*HypergeometricPFQ[{1-2*n, 1-n, -n}, {3/2 - 3*n/2, 2 - 3*n/2}, -1/4]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 05 2012, after formula *)

PROG

(PARI) N=33; x='x+O('x^N); Vec(serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x)))) \\ Joerg Arndt, May 25 2016

CROSSREFS

Row sums of A094021.

Cf. A006013, A000108.

Sequence in context: A214954 A055724 A301433 * A086618 A224769 A302285

Adjacent sequences:  A054724 A054725 A054726 * A054728 A054729 A054730

KEYWORD

nonn,easy

AUTHOR

Philippe Flajolet, Apr 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 02:54 EST 2020. Contains 332217 sequences. (Running on oeis4.)