login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054725
a(1)=1; a(n) = Sum_{p | n} e * a(p-1), where sum is over all primes p that divide n, and e is the multiplicity of p in n.
6
1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6
OFFSET
1,4
FORMULA
a(1) = 1 and a(n) = A064415(n) for n>=2. [Joerg Arndt, Apr 08 2014]
EXAMPLE
a(20) = a(2-1) + a(2-1) + a(5-1) = 1 + 1 +2 = 4 because 20 = 2*2*5.
MATHEMATICA
Fold[Append[#1, Total@ Table[#1[[p - 1]], {p, Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[#2]]}]] &, {1}, Range[2, 105]] (* Michael De Vlieger, Dec 11 2017 *)
PROG
(PARI) a(n)=if (n<=1, 1, my(F=factor(n)); sum(e=1, #F[, 1], F[e, 2] * a(F[e, 1]-1) ) );
vector(200, n, a(n)) \\ Joerg Arndt, Apr 08 2014
CROSSREFS
Sequence in context: A272314 A241216 A125173 * A064415 A086833 A376138
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 20 2000
EXTENSIONS
Title clarified by Sean A. Irvine, Feb 18 2022
STATUS
approved