The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108447 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no peaks of the form ud. 10
 1, 1, 4, 20, 113, 688, 4404, 29219, 199140, 1385904, 9807820, 70364704, 510609620, 3741212535, 27639233548, 205660399220, 1539916433473, 11594310041792, 87725707127600, 666681174728724, 5086601816592432, 38948589882247968 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Column 0 of A108446. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370. FORMULA a(n) = (1/n) * Sum_{j=0..n} binomial(n, j)*binomial(n+2j, j-1) (n>=1); a(0)=1. G.f.: G satisfies G = 1 + z*G*(G^2+G-1). a(n) = hypergeom([1-n,(n+3)/2,(n+4)/2],[2,n+3],-4) for n>=1. - Peter Luschny, Oct 30 2015 a(n) ~ sqrt((s-1) / (Pi*(1 + 3*s))) / (2*n^(3/2) * r^(n + 1/2)), where r = 0.1215851068721183026145063923222031450327682505108... and s = 1.451605962955776643742608112028547116887657025022... are real roots of the system of equations 1 + r*s*(-1 + s + s^2) = s, r*(-1 + 2*s + 3*s^2) = 1. - Vaclav Kotesovec, Nov 27 2017 O.g.f.: A(x) = (1/x) * Revert( x/c(x/(1 - x) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - Peter Bala, Mar 08 2020 EXAMPLE a(2)=4 because we have uUddd, UddUdd, UdUddd and UUdddd. MAPLE a:=n->(1/n)*sum(binomial(n, j)*binomial(n+2*j, j-1), j=0..n): 1, seq(a(n), n=1..25); a := n -> `if`(n=0, 1, simplify(hypergeom([1-n, (n+3)/2, (n+4)/2], [2, n+3], -4))): seq(a(n), n=0..21); # Peter Luschny, Oct 30 2015 MATHEMATICA Flatten[{1, Table[Sum[Binomial[n, j]*Binomial[n + 2*j, j-1], {j, 0, n}]/n, {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 27 2017 *) terms = 22; g[_] = 1; Do[g[x_] = 1+x*g[x]*(g[x]^2+g[x]-1) + O[x]^terms // Normal, {terms}]; CoefficientList[g[x], x] (* Jean-François Alcover, Jul 19 2018 *) CROSSREFS Cf. A000108, A027307, A108446, A108425, A108426. Sequence in context: A209200 A294119 A245375 * A287512 A211248 A028475 Adjacent sequences:  A108444 A108445 A108446 * A108448 A108449 A108450 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 02:18 EST 2020. Contains 338921 sequences. (Running on oeis4.)