login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108445
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k pyramids (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).
4
1, 0, 2, 4, 2, 4, 32, 18, 8, 8, 252, 146, 60, 24, 16, 2112, 1186, 496, 176, 64, 32, 18484, 10146, 4148, 1488, 480, 160, 64, 166976, 90162, 36216, 12792, 4160, 1248, 384, 128, 1545548, 824114, 326828, 113960, 36720, 11104, 3136, 896, 256, 14583808, 7699394
OFFSET
0,3
COMMENTS
Row sums yield A027307. Column 0 yields A108449. Number of pyramids in all paths from (0,0) to (3n,0) is given by A108450
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
G.f. =(1-z)/[1+z-2tz-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
EXAMPLE
T(2,1)=2 because we have uudd and UUdddd.
Triangle begins:
1;
0,2;
4,2,4;
32,18,8,8;
252,146,60,24,16;
MAPLE
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=(1-z)/(1+z-2*t*z-z*(1-z)*A*(1+A)): Gser:=simplify(series(G, z=0, 12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 9 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 11 2005
STATUS
approved