login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108444 Number of triple descents (i.e., ddd's) in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1). 1
5, 73, 857, 9505, 103341, 1114969, 11996209, 128989249, 1387480981, 14937170089, 160978217225, 1736820843233, 18760031574077, 202856430706617, 2195832009812065, 23792481053343361, 258038743598973477 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 2..100

Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.

FORMULA

a(n) = Sum_{k=1..2n-1} k*A108443(n,k). Example: a(3) = 1*24 + 2*15 + 3*3 + 4*1 = 73.

G.f.: zA(2A^2-2zA^2-zA-2)/(1-2zA-3zA^2), where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

Recurrence: n*(2*n+1)*(40*n^5 - 100*n^4 - 758*n^3 + 3649*n^2 - 5474*n + 2727)*a(n) = (880*n^7 - 2200*n^6 - 15316*n^5 + 79354*n^4 - 145332*n^3 + 125379*n^2 - 48111*n + 5220)*a(n-1) + (n-3)*(2*n - 5)*(40*n^5 + 100*n^4 - 758*n^3 + 1175*n^2 - 650*n + 84)*a(n-2). - Vaclav Kotesovec, Mar 18 2014

a(n) ~ 5^(3/4) * ((11+5*sqrt(5))/2)^n / (10*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 18 2014

EXAMPLE

a(2)=5 because in the ten paths udud, udUdd, uudd, uU(ddd), Uddud, UddUdd, Ududd, UdU(ddd), Uu(ddd) and UU(d[dd)d] (see A027307) we have 5 ddd's (shown between parentheses).

MAPLE

A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A*(-z*A-2*z*A^2-2+2*A^2)/(1-3*z*A^2-2*z*A): Gser:=series(G, z=0, 26): seq(coeff(Gser, z^n), n=2..21);

CROSSREFS

Cf. A027307, A108443.

Sequence in context: A248046 A059017 A099667 * A155662 A182328 A222352

Adjacent sequences:  A108441 A108442 A108443 * A108445 A108446 A108447

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jun 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 02:15 EDT 2020. Contains 333153 sequences. (Running on oeis4.)