login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A108444
Number of triple descents (i.e., ddd's) in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1).
1
5, 73, 857, 9505, 103341, 1114969, 11996209, 128989249, 1387480981, 14937170089, 160978217225, 1736820843233, 18760031574077, 202856430706617, 2195832009812065, 23792481053343361, 258038743598973477
OFFSET
2,1
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
a(n) = Sum_{k=1..2n-1} k*A108443(n,k). Example: a(3) = 1*24 + 2*15 + 3*3 + 4*1 = 73.
G.f.: zA(2A^2-2zA^2-zA-2)/(1-2zA-3zA^2), where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
Recurrence: n*(2*n+1)*(40*n^5 - 100*n^4 - 758*n^3 + 3649*n^2 - 5474*n + 2727)*a(n) = (880*n^7 - 2200*n^6 - 15316*n^5 + 79354*n^4 - 145332*n^3 + 125379*n^2 - 48111*n + 5220)*a(n-1) + (n-3)*(2*n - 5)*(40*n^5 + 100*n^4 - 758*n^3 + 1175*n^2 - 650*n + 84)*a(n-2). - Vaclav Kotesovec, Mar 18 2014
a(n) ~ 5^(3/4) * ((11+5*sqrt(5))/2)^n / (10*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 18 2014
EXAMPLE
a(2)=5 because in the ten paths udud, udUdd, uudd, uU(ddd), Uddud, UddUdd, Ududd, UdU(ddd), Uu(ddd) and UU(d[dd)d] (see A027307) we have 5 ddd's (shown between parentheses).
MAPLE
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A*(-z*A-2*z*A^2-2+2*A^2)/(1-3*z*A^2-2*z*A): Gser:=series(G, z=0, 26): seq(coeff(Gser, z^n), n=2..21);
CROSSREFS
Sequence in context: A248046 A059017 A099667 * A155662 A182328 A222352
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 10 2005
STATUS
approved