login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A108442
Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having only u steps among the steps leading to the first d step.
3
1, 1, 3, 15, 97, 721, 5827, 49759, 441729, 4035937, 37702723, 358474735, 3457592161, 33748593841, 332730216579, 3308635650495, 33145196426753, 334193815799233, 3388807714823043, 34537227997917391, 353578650475659617, 3634495706671023505, 37496621681376849219, 388135791657414454815
OFFSET
0,3
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
G.f.: 1/(1-z*A), where A = 1 + z*A^2 + z*A^3 = (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
a(n) = Sum_{k=1..n} (k*(Sum_{i=0..n-k} binomial(2*n-k, i)*binomial(3*n-2*k-i-1, 2*n-k-1))/(2*n-k)), n > 0, a(0)=1. - Vladimir Kruchinin, Oct 23 2011
G.f. y(x) satisfies: (3+x)*y*(1-y) + (1+x^2)*y^3 = 1. - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (11+5*sqrt(5))^n / (5^(5/4) * sqrt(Pi) * n^(3/2) * 2^(n+1)). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence (2*n-1)*(n-1)*a(n) +6*(n^2-10*n+13)*a(n-1) +(-310*n^2+1869*n-2759)*a(n-2) +48*(-n+3)*a(n-3) +(-310*n^2+1851*n-2705)*a(n-4) +6*(-n^2+2*n+11)*a(n-5) +(n-5)*(2*n-11)*a(n-6)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=3 because we have udud, udUdd and uudd.
MAPLE
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: gser:=series(1/(1-z*A), z=0, 30): 1, seq(coeff(gser, z^n), n=1..25);
MATHEMATICA
Flatten[{1, Table[Sum[k*Sum[Binomial[2*n-k, i]*Binomial[3*n-2*k-i-1, 2*n-k-1], {i, 0, n-k}]/(2*n-k), {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 17 2014, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 1 else sum((k*sum(binomial(2*n-k, i)*binomial(3*n-2*k-i-1, 2*n-k-1), i, 0, n-k))/(2*n-k), k, 1, n); /* Vladimir Kruchinin, Oct 23 2011 */
CROSSREFS
Column 0 of A108441.
Sequence in context: A378890 A231445 A378882 * A060148 A143435 A331325
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 08 2005
STATUS
approved