login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331325
a(n) = n!*[x^n] cosh(x/(1-x))/(1-x).
2
1, 1, 3, 15, 97, 745, 6571, 65359, 723969, 8842257, 118091251, 1712261551, 26786070433, 449634481465, 8059974923547, 153634497337455, 3102367733191681, 66145005096272929, 1484586887025099619, 34983117545622446287, 863397428225495045601, 22269844592814969946761
OFFSET
0,3
LINKS
FORMULA
a(n) + A331326(n) = A002720(n).
a(n) - A331326(n) = A009940(n).
a(n) = Sum_{k=0..n/2} |A021009(n, 2*k)|.
a(n) = Sum_{k=0..n} binomial(n, 2*k)*n!/(2*k)!.
a(n) = n!*hypergeom([1/2 - n/2, -n/2], [1/2, 1/2, 1], 1/4).
(n+1)^2*(n+2)^2*a(n) - 4*(n+2)^3*a(n+1) + (6*n^2+30*n+37)*a(n+2) - 4*(n+3)*a(n+3)+a(n+4)=0. - Robert Israel, Jan 23 2020
Sum_{n>=0} a(n) * x^n / (n!)^2 = (1/2) * exp(x) * (BesselI(0,2*sqrt(x)) + BesselJ(0,2*sqrt(x))). - Ilya Gutkovskiy, Jul 18 2020
a(n) ~ 2^(-3/2) * exp(2*sqrt(n)-n-1/2) * n^(n+1/4) * (1 + 31/(48*sqrt(n))). - Vaclav Kotesovec, Feb 17 2024
MAPLE
gf := cosh(x/(1 - x))/(1 - x): ser := series(gf, x, 22):
seq(n!*coeff(ser, x, n), n=0..21);
# Alternative: seq(add(abs(A021009(n, 2*k)), k=0..n/2), n=0..21);
A331325 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1,
`if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k), k=0..n) end:
seq(A331325(n), n=0..21);
MATHEMATICA
a[n_] := n! HypergeometricPFQ[{1/2 - n/2, -n/2}, {1, 1/2, 1/2}, 1/4];
Array[a, 22, 0]
PROG
(PARI) x='x+O('x^22); Vec(serlaplace(cosh(x/(1-x))/(1-x)))
(Python)
def A331325():
sa, sb, ta, tb, n = 1, 2, 1, 0, 2
yield sa
yield ta
while(True):
s = 2*n*sb - ((n-1)**2)*sa
t = 2*(n-1)*tb - ((n-1)**2)*ta
sa, sb, ta, tb = sb, s, tb, t
n += 1
yield (s + t)//2
a = A331325(); print([next(a) for _ in range(22)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 21 2020
STATUS
approved