login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331618
E.g.f.: exp(1 / (1 - arctanh(x)) - 1).
3
1, 1, 3, 15, 97, 785, 7523, 83615, 1053281, 14838177, 230832867, 3929944623, 72633052545, 1447981700529, 30960823851267, 706676217730239, 17145815895371073, 440594781536265537, 11952178787661839427, 341291300477569866831, 10231558345117929439521
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A296676(k) * a(n-k).
a(n) ~ (exp(2) + 1)^(n - 1/4) * n^(n - 1/4) / ((exp(2) - 1)^(n + 1/4) * exp(n - 4*exp(1)*sqrt(n/(exp(4) - 1)) - 2/(exp(4) - 1) - 1/2)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[1/(1 - ArcTanh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A296676[0] = 1; A296676[n_] := A296676[n] = Sum[Binomial[n, k] If[OddQ[k], (k - 1)!, 0] A296676[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A296676[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
PROG
(PARI) seq(n)={Vec(serlaplace(exp(1/(1 - atanh(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 22 2020
STATUS
approved