login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331610
Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).
4
1, 1, 3, 15, 97, 777, 7379, 80983, 1007137, 13986289, 214383171, 3593224767, 65347120705, 1281151315641, 26928292883795, 603928982033863, 14392387319349697, 363135896514611041, 9669298448057196291, 270932711729869233903, 7967970654277850949025
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(sin(x) / (cos(x) - sin(x))).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * 2^(k-1) * A000111(k) * a(n-k).
a(n) ~ 2^(2*n - 1/4) * exp(1/Pi - 1/2 + 2^(3/2)*sqrt(n/Pi) - n) * n^(n - 1/4) / Pi^(n + 1/4). - Vaclav Kotesovec, Jan 27 2020
MAPLE
S:= series(exp(1/(1-tan(x))-1), x, 31):
seq(coeff(S, x, i)*i!, i=0..30); # Robert Israel, Dec 10 2024
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[1/(1 - Tan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] 2^(k - 1) A000111[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 22 2020
STATUS
approved