The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331607 E.g.f.: exp(1 / (1 - sin(x)) - 1). 4
 1, 1, 3, 12, 61, 372, 2639, 21280, 191833, 1908688, 20750331, 244478784, 3100597333, 42088689216, 608543191559, 9332562964480, 151252803045937, 2582250195499264, 46306562212010355, 870011934425816064, 17086276243125287917 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000111(k+1) * a(n-k). a(n) ~  2^(n + 2/3) * exp(8/(3*Pi^2) - 5/6 + 2^(5/3) * n^(1/3) / Pi^(4/3) + 3 * 2^(1/3) * n^(2/3) / Pi^(2/3) - n) * n^(n - 1/6) / (sqrt(3) * Pi^(n + 1/3)). - Vaclav Kotesovec, Jan 26 2020 MATHEMATICA nmax = 20; CoefficientList[Series[Exp[1/(1 - Sin[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]! A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A000111[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}] CROSSREFS Cf. A000111, A000772, A002017, A331608, A331610, A331611. Sequence in context: A161799 A182970 A159925 * A235802 A317169 A121694 Adjacent sequences:  A331604 A331605 A331606 * A331608 A331609 A331610 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 22 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:51 EST 2020. Contains 338944 sequences. (Running on oeis4.)