The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331606 Number of compositions of n with the multiplicity of the first part odd. 3
 1, 1, 4, 4, 12, 18, 44, 72, 158, 288, 604, 1146, 2332, 4528, 9126, 17944, 35940, 71130, 142132, 282344, 563630, 1121936, 2239060, 4462530, 8906236, 17764160, 35458774, 70761520, 141272876, 282025466, 563159588, 1124543256, 2245918406, 4485670168, 8960061076 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1. FORMULA G.f.: Sum_{i>=1} (1-x)*x^i/(2*(-2*x^(i+1)+2*x^i-2*x+1)) + x/(2*(1-2*x)). a(n) = A011782(n) - A331609(n). - Alois P. Heinz, Jan 23 2020 EXAMPLE For n=3, a(4)=4 as we count 4, 3+1, 1+3 and 2+1+1. MAPLE b:= proc(n, p, t) option remember; `if`(n=0, t,       add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n))     end: a:= n-> add(b(n-j, j, 1), j=1..n): seq(a(n), n=1..38);  # Alois P. Heinz, Jan 23 2020 MATHEMATICA gf[x_] := x/(2 (1 - 2 x)) + Sum[(1 - x) x^i/(2 (-2 x^(i + 1) + 2 x^i - 2 x + 1))  , {i, 1, 40}]; CL := CoefficientList[Series[gf[x], {x, 0, 35}], x]; Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *) CROSSREFS Cf. A011782, A331609 (similar with even). Sequence in context: A157617 A053415 A303315 * A079902 A309128 A120033 Adjacent sequences:  A331603 A331604 A331605 * A331607 A331608 A331609 KEYWORD nonn AUTHOR Arnold Knopfmacher, Jan 22 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 23:26 EDT 2021. Contains 346340 sequences. (Running on oeis4.)