login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331606
Number of compositions of n with the multiplicity of the first part odd.
3
1, 1, 4, 4, 12, 18, 44, 72, 158, 288, 604, 1146, 2332, 4528, 9126, 17944, 35940, 71130, 142132, 282344, 563630, 1121936, 2239060, 4462530, 8906236, 17764160, 35458774, 70761520, 141272876, 282025466, 563159588, 1124543256, 2245918406, 4485670168, 8960061076
OFFSET
1,3
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
FORMULA
G.f.: Sum_{i>=1} (1-x)*x^i/(2*(-2*x^(i+1)+2*x^i-2*x+1)) + x/(2*(1-2*x)).
a(n) = A011782(n) - A331609(n). - Alois P. Heinz, Jan 23 2020
EXAMPLE
For n=3, a(4)=4 as we count 4, 3+1, 1+3 and 2+1+1.
MAPLE
b:= proc(n, p, t) option remember; `if`(n=0, t,
add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n))
end:
a:= n-> add(b(n-j, j, 1), j=1..n):
seq(a(n), n=1..38); # Alois P. Heinz, Jan 23 2020
MATHEMATICA
gf[x_] := x/(2 (1 - 2 x)) + Sum[(1 - x) x^i/(2 (-2 x^(i + 1) + 2 x^i - 2 x + 1)) , {i, 1, 40}]; CL := CoefficientList[Series[gf[x], {x, 0, 35}], x];
Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *)
CROSSREFS
Cf. A011782, A331609 (similar, with even).
Sequence in context: A157617 A053415 A303315 * A079902 A309128 A120033
KEYWORD
nonn
AUTHOR
Arnold Knopfmacher, Jan 22 2020
STATUS
approved