The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331609 Number of compositions of n with the multiplicity of the first part even. 3
 0, 1, 0, 4, 4, 14, 20, 56, 98, 224, 420, 902, 1764, 3664, 7258, 14824, 29596, 59942, 120012, 241944, 484946, 975216, 1955244, 3926078, 7870980, 15790272, 31650090, 63456208, 127162580, 254845446, 510582236, 1022940392, 2049048890, 4104264424, 8219808108 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1. FORMULA G.f.: (1-x)/(1-2*x) - Sum_{i>=1} ((x-1)*x^i*(-x^(i+1)+x^i-2*x+1)) / ((2*x-1) * (-2*x^(i+1)+2*x^i-2*x+1)). a(n) = A011782(n) - A331606(n). - Alois P. Heinz, Jan 23 2020 EXAMPLE For n=4, a(4)=4 and counts 2+2, 1+2+1, 1+1+2 and 1+1+1+1. MAPLE b:= proc(n, p, t) option remember; `if`(n=0, t,       add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n))     end: a:= n-> add(b(n-j, j, 0), j=1..n): seq(a(n), n=1..38);  # Alois P. Heinz, Jan 23 2020 MATHEMATICA gf[x_] := (1 - x)/(1 - 2 x) - Sum[ ((x - 1) x^i (-x^(i + 1) + x^i - 2 x + 1)) / ((2 x - 1) (-2 x^(i + 1) + 2 x^i - 2 x + 1)), {i, 1, 40}]; CL := CoefficientList[Series[gf[x], {x, 0, 35}], x]; Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *) CROSSREFS Cf. A011782, A331606 (similar with odd). Sequence in context: A263871 A326982 A263797 * A174406 A270844 A287286 Adjacent sequences:  A331606 A331607 A331608 * A331610 A331611 A331612 KEYWORD nonn AUTHOR Arnold Knopfmacher, Jan 22 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 22:36 EDT 2021. Contains 346408 sequences. (Running on oeis4.)