login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326982
Total sum of composite parts in all partitions of n.
3
0, 0, 0, 0, 4, 4, 14, 18, 44, 67, 117, 166, 283, 391, 603, 848, 1250, 1702, 2442, 3280, 4565, 6094, 8266, 10878, 14566, 18970, 24953, 32255, 41909, 53619, 68983, 87542, 111496, 140561, 177436, 222125, 278425, 346293, 430951, 533083, 659268, 810948, 997322
OFFSET
0,5
LINKS
FORMULA
a(n) = A194545(n) - A000070(n-1), n >= 1.
a(n) = A066186(n) - A326958(n).
EXAMPLE
For n = 6 we have:
--------------------------------------
Partitions Sum of
of 6 composite parts
--------------------------------------
6 .......................... 6
3 + 3 ...................... 0
4 + 2 ...................... 4
2 + 2 + 2 .................. 0
5 + 1 ...................... 0
3 + 2 + 1 .................. 0
4 + 1 + 1 .................. 4
2 + 2 + 1 + 1 .............. 0
3 + 1 + 1 + 1 .............. 0
2 + 1 + 1 + 1 + 1 .......... 0
1 + 1 + 1 + 1 + 1 + 1 ...... 0
--------------------------------------
Total ..................... 14
So a(6) = 14.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+
(p-> p+[0, `if`(isprime(i), 0, p[1]*i)])(b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
MATHEMATICA
Table[Total[Select[Flatten[IntegerPartitions[n]], CompositeQ]], {n, 0, 50}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 19 2020 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, 0}, b[n, i - 1] +
With[{p = b[n-i, Min[n-i, i]]}, p+{0, If[PrimeQ[i], 0, p[[1]]*i]}]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 50] (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Aug 09 2019
STATUS
approved