login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326958
Total sum of noncomposite parts in all partitions of n.
2
0, 1, 4, 9, 16, 31, 52, 87, 132, 203, 303, 450, 641, 922, 1287, 1792, 2446, 3347, 4488, 6030, 7975, 10538, 13778, 17987, 23234, 29980, 38383, 49015, 62195, 78766, 99137, 124560, 155672, 194158, 241104, 298780, 368747, 454276, 557619, 683132, 834252, 1016955
OFFSET
0,3
FORMULA
a(n) = A073118(n) + A000070(n-1), n >= 1.
a(n) = A066186(n) - A326982(n).
EXAMPLE
For n = 6 we have:
--------------------------------------
. Sum of
Partitions noncomposite
of 6 parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 6
4 + 2 ...................... 2
2 + 2 + 2 .................. 6
5 + 1 ...................... 6
3 + 2 + 1 .................. 6
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 6
3 + 1 + 1 + 1 .............. 6
2 + 1 + 1 + 1 + 1 .......... 6
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
Total ..................... 52
So a(6) = 52.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+
(p-> p+[0, `if`(isprime(i), p[1]*i, 0)])(b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, n}, b[n, i-1] + # + {0, If[PrimeQ[i], #[[1]] i, 0]}&[b[n-i, Min[n-i, i]]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 50] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Aug 08 2019
STATUS
approved