login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281904
Expansion of Sum_{i>=1} mu(i)^2*i*x^i/(1 - x^i) / Product_{j>=1} (1 - x^j), where mu() is the Moebius function (A008683).
0
1, 4, 9, 16, 31, 58, 93, 144, 221, 343, 502, 733, 1048, 1495, 2089, 2881, 3947, 5357, 7205, 9618, 12758, 16812, 22001, 28623, 37037, 47720, 61121, 77973, 99029, 125322, 157874, 198205, 247954, 309203, 384260, 476116, 588149, 724613, 890175, 1090781, 1333193, 1625702, 1977505, 2400221, 2906800, 3513121
OFFSET
1,2
COMMENTS
Total sum of squarefree parts in all partitions of n.
Convolution of the sequences A000041 and A048250.
FORMULA
G.f.: Sum_{i>=1} mu(i)^2*i*x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).
EXAMPLE
a(4) = 16 because we have [4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1] and 3 + 1 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 16.
MATHEMATICA
nmax = 46; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 i x^i/(1 - x^i), {i, 1, nmax}] / Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 01 2017
STATUS
approved