Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 07 2021 04:46:30
%S 0,0,0,0,4,4,14,18,44,67,117,166,283,391,603,848,1250,1702,2442,3280,
%T 4565,6094,8266,10878,14566,18970,24953,32255,41909,53619,68983,87542,
%U 111496,140561,177436,222125,278425,346293,430951,533083,659268,810948,997322
%N Total sum of composite parts in all partitions of n.
%H Alois P. Heinz, <a href="/A326982/b326982.txt">Table of n, a(n) for n = 0..8000</a>
%F a(n) = A194545(n) - A000070(n-1), n >= 1.
%F a(n) = A066186(n) - A326958(n).
%e For n = 6 we have:
%e --------------------------------------
%e Partitions Sum of
%e of 6 composite parts
%e --------------------------------------
%e 6 .......................... 6
%e 3 + 3 ...................... 0
%e 4 + 2 ...................... 4
%e 2 + 2 + 2 .................. 0
%e 5 + 1 ...................... 0
%e 3 + 2 + 1 .................. 0
%e 4 + 1 + 1 .................. 4
%e 2 + 2 + 1 + 1 .............. 0
%e 3 + 1 + 1 + 1 .............. 0
%e 2 + 1 + 1 + 1 + 1 .......... 0
%e 1 + 1 + 1 + 1 + 1 + 1 ...... 0
%e --------------------------------------
%e Total ..................... 14
%e So a(6) = 14.
%p b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+
%p (p-> p+[0, `if`(isprime(i), 0, p[1]*i)])(b(n-i, min(n-i, i))))
%p end:
%p a:= n-> b(n$2)[2]:
%p seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 13 2019
%t Table[Total[Select[Flatten[IntegerPartitions[n]],CompositeQ]],{n,0,50}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 19 2020 *)
%t b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, 0}, b[n, i - 1] +
%t With[{p = b[n-i, Min[n-i, i]]}, p+{0, If[PrimeQ[i], 0, p[[1]]*i]}]];
%t a[n_] := b[n, n][[2]];
%t a /@ Range[0, 50] (* _Jean-François Alcover_, Jun 07 2021, after _Alois P. Heinz_ *)
%Y Cf. A000041, A002808, A066186, A073118, A194544, A194545, A199936, A326958, A326981.
%K nonn
%O 0,5
%A _Omar E. Pol_, Aug 09 2019