login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326981
Total number of composite parts in all partitions of n.
2
0, 0, 0, 0, 1, 1, 3, 4, 9, 13, 22, 31, 51, 70, 105, 145, 210, 283, 398, 530, 726, 958, 1283, 1673, 2212, 2854, 3714, 4756, 6119, 7764, 9893, 12457, 15728, 19674, 24636, 30615, 38079, 47034, 58109, 71396, 87692, 107179, 130943, 159278, 193619, 234486, 283720
OFFSET
0,7
FORMULA
a(n) = A144119(n) - A000070(n-1), n >= 1.
a(n) = A006128(n) - A326957(n).
EXAMPLE
For n = 6 we have:
--------------------------------------
. Number of
Partitions composite
of 6 parts
--------------------------------------
6 .......................... 1
3 + 3 ...................... 0
4 + 2 ...................... 1
2 + 2 + 2 .................. 0
5 + 1 ...................... 0
3 + 2 + 1 .................. 0
4 + 1 + 1 .................. 1
2 + 2 + 1 + 1 .............. 0
3 + 1 + 1 + 1 .............. 0
2 + 1 + 1 + 1 + 1 .......... 0
1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
Total ...................... 3
So a(6) = 3.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+
(p-> p+[0, `if`(isprime(i), 0, p[1])])(b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, 0}, b[n, i-1] + # + {0, If[PrimeQ[i], 0, #[[1]]]}&[b[n-i, Min[n-i, i]]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 50] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Aug 09 2019
STATUS
approved