login
A037032
Total number of prime parts in all partitions of n.
15
0, 1, 2, 4, 7, 13, 20, 32, 48, 73, 105, 153, 214, 302, 415, 569, 767, 1034, 1371, 1817, 2380, 3110, 4025, 5199, 6659, 8512, 10806, 13684, 17229, 21645, 27049, 33728, 41872, 51863, 63988, 78779, 96645, 118322, 144406, 175884, 213617, 258957, 313094, 377867
OFFSET
1,3
COMMENTS
a(n) is also the sum of the differences between the sum of p-th largest and the sum of (p+1)st largest elements in all partitions of n for all primes p. - Omar E. Pol, Oct 25 2012
LINKS
FORMULA
a(n) = Sum_{k=1..n} A001221(k)*A000041(n-k). - Vladeta Jovovic, Aug 22 2002
a(n) = Sum_{k=1..floor(n/2)} k*A222656(n,k). - Alois P. Heinz, May 29 2013
G.f.: Sum_{i>=1} x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Jan 24 2017
EXAMPLE
From Omar E. Pol, Nov 20 2011 (Start):
For n = 6 we have:
--------------------------------------
. Number of
Partitions prime parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 2
4 + 2 ...................... 1
2 + 2 + 2 .................. 3
5 + 1 ...................... 1
3 + 2 + 1 .................. 2
4 + 1 + 1 .................. 0
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 1
2 + 1 + 1 + 1 + 1 .......... 1
1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
Total ..................... 13
So a(6) = 13.
(End)
MAPLE
with(combinat): a:=proc(n) local P, c, j, i: P:=partition(n): c:=0: for j from 1 to numbpart(n) do for i from 1 to nops(P[j]) do if isprime(P[j][i])=true then c:=c+1 else c:=c fi: od: od: c: end: seq(a(n), n=1..42); # Emeric Deutsch, Mar 30 2006
# second Maple program
b:= proc(n, i) option remember; local g;
if n=0 or i=1 then [1, 0]
else g:= `if`(i>n, [0$2], b(n-i, i));
b(n, i-1) +g +[0, `if`(isprime(i), g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
MATHEMATICA
a[n_] := Sum[PrimeNu[k]*PartitionsP[n - k], {k, 1, n}]; Array[a, 100] (* Jean-François Alcover, Mar 16 2015, after Vladeta Jovovic *)
PROG
(PARI) a(n)={sum(k=1, n, omega(k)*numbpart(n-k))} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Naohiro Nomoto, Apr 19 2002
STATUS
approved