login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296676 Expansion of e.g.f. 1/(1 - arctanh(x)). 2
1, 1, 2, 8, 40, 264, 2048, 18864, 196992, 2330112, 30519552, 440998656, 6940852224, 118501542912, 2177222879232, 42886017982464, 900748014944256, 20107190510714880, 475167358873239552, 11854636521914695680, 311291779253770911744, 8583598112533040332800, 247944624171011289907200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..430

FORMULA

E.g.f.: 1/(1 + (log(1 - x) - log(1 + x))/2).

a(n) ~ n! * 4*exp(2) * (exp(2)+1)^(n-1) / (exp(2)-1)^(n+1). - Vaclav Kotesovec, Dec 18 2017

EXAMPLE

1/(1 - arctanh(x)) = 1 + x/1! + 2*x^2/2! + 8*x^3/3! + 40*x^4/4! + 264*x^5/5! + ...

MAPLE

S:= series(1/(1-arctanh(x)), x, 41):

seq(coeff(S, x, j)*j!, j=0..40); # Robert Israel, Dec 18 2017

# second Maple program:

a:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,

      a(n-j)*binomial(n, j)*(j-1)!, 0), j=1..n))

    end:

seq(a(n), n=0..25);  # Alois P. Heinz, Jun 22 2021

MATHEMATICA

nmax = 22; CoefficientList[Series[1/(1 - ArcTanh[x]), {x, 0, nmax}], x] Range[0, nmax]!

nmax = 22; CoefficientList[Series[1/(1 + (Log[1 - x] - Log[1 + x])/2), {x, 0, nmax}], x] Range[0, nmax]!

PROG

(PARI) x='x+O('x^99); Vec(serlaplace(1/(1+(log(1-x)-log(1+x))/2))) \\ Altug Alkan, Dec 18 2017

CROSSREFS

Cf. A000828, A010050, A191700, A296675.

Sequence in context: A259869 A321733 A000828 * A281910 A180736 A111394

Adjacent sequences:  A296673 A296674 A296675 * A296677 A296678 A296679

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Dec 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 13:24 EDT 2022. Contains 354883 sequences. (Running on oeis4.)