login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296675
Expansion of e.g.f. 1/(1 - arcsinh(x)).
3
1, 1, 2, 5, 16, 69, 368, 2169, 14208, 109929, 970752, 8995821, 88341504, 988161069, 12276025344, 154843019169, 2009594658816, 29484826539345, 476778061430784, 7588488203093205, 121001549512310784, 2205431202369899925, 44538441694414110720, 852615914764223422665
OFFSET
0,3
COMMENTS
a(48) is negative. - Vaclav Kotesovec, Jan 26 2020
LINKS
FORMULA
E.g.f.: 1/(1 - log(x + sqrt(1 + x^2))).
a(n) ~ 8*((4 - Pi^2)*sin(Pi*n/2) - 4*Pi*cos(Pi*n/2)) * n^(n-1) / ((4 + Pi^2)^2 * exp(n)). - Vaclav Kotesovec, Dec 18 2017
EXAMPLE
1/(1 - arcsinh(x)) = 1 + x/1! + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 69*x^5/5! + ...
MAPLE
a:=series(1/(1-arcsinh(x)), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[1/(1 - ArcSinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[1/(1 - Log[x + Sqrt[1 + x^2]]), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) x='x+O('x^99); Vec(serlaplace(1/(1-log(x+sqrt(1+x^2))))) \\ Altug Alkan, Dec 18 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Dec 18 2017
STATUS
approved