login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371313
Expansion of e.g.f. Product_{k>=1} 1 / (1 - x^k/k)^2.
1
1, 2, 8, 40, 254, 1868, 15996, 153144, 1637520, 19191072, 245463936, 3390905472, 50406479328, 800678811840, 13547088596544, 242995426574976, 4607744279916672, 92046384885051648, 1932579234508861440, 42530614791735573504, 979132781170084872960, 23529915213836747927040
OFFSET
0,2
COMMENTS
Exponential self-convolution of A007841.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A007841(k) * A007841(n-k).
a(n) ~ exp(-2*gamma) * n! * n^3 / 6, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 24 2024
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k/k)^2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 24 2024
STATUS
approved