login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371316
E.g.f. satisfies A(x) = (exp(x) - 1)/(1 - A(x))^2.
2
0, 1, 5, 55, 1001, 25471, 832265, 33209695, 1565233241, 85089724831, 5241027586025, 360724089079135, 27436914192242681, 2285358551395272991, 206893372546088226185, 20226992715373747441375, 2123855112711652849031321, 238375283773978224211297951
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (3*k-2)!/(2*k-1)! * Stirling2(n,k).
a(n) ~ sqrt(31) * n^(n-1) / (sqrt(2) * 3^(3/2) * log(31/27)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Mar 19 2024
E.g.f.: Series_Reversion( log(1 + x * (1 - x)^2) ). - Seiichi Manyama, Sep 08 2024
MATHEMATICA
Table[Sum[(3*k-2)!/(2*k-1)! * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 19 2024 *)
PROG
(PARI) a(n) = sum(k=1, n, (3*k-2)!/(2*k-1)!*stirling(n, k, 2));
CROSSREFS
Sequence in context: A141361 A203013 A266481 * A006150 A373500 A140049
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved