login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141361
E.g.f.: A(x) = exp(x*A(x) * exp(x*A(x)^2 * exp(x*A(x)^3 * exp(x*A(x)^4 * exp(...))))), an infinite power tower.
4
1, 1, 5, 55, 981, 24621, 803143, 32390247, 1560845289, 87688371385, 5637912173451, 408922311037659, 33077570245035517, 2956347175261764597, 289716070585295689455, 30931475430329804121871, 3578416722896540323224657, 446526125468639494991613297
OFFSET
0,3
FORMULA
E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) is the e.g.f. of A141360.
E.g.f.: A(x) = x/Series_Reversion(x*C(x)) where C(x) is the e.g.f. of A141362.
E.g.f.: A(x) = B(x*A(x)) where B(x) = exp(x*exp(x*B(x)*exp(x*B(x)^2*exp(x*B(x)^3*exp(...))))) is the e.g.f. of A141360 = [1,1,3,22,281,5276,132577,4209766,...].
E.g.f.: A(x) = C(x/A(x)) where C(x) = exp(x*C(x)^2*exp(x*C(x)^3*exp(x*C(x)^4*exp(...)))) is the e.g.f. of A141362 = [1,1,7,106,2545,84516,3599869,187549426,...].
E.g.f.: A(x) = D(x/A(x)^2) where D(x) = exp(x*D(x)^3*exp(x*D(x)^4*exp(x*D(x)^5*exp(...)))) is the e.g.f. of A141363 = [1,1,9,175,5357,225461,12112675,792855043,...].
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 981*x^4/4! + 24621*x^5/5! +...
PROG
(PARI) {a(n) = my(A=1+x + x*O(x^n), F); for(i=0, n+1, for(j=0, n, F = exp(x*(A + x*O(x^n))^(n-j+1) * F)); A=F); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A141360, A141362, A141363; variant: A141357.
Sequence in context: A172493 A155807 A135861 * A203013 A266481 A371316
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2008
EXTENSIONS
Typo in data corrected by D. S. McNeil, Aug 17 2010
STATUS
approved