|
|
A052886
|
|
Expansion of e.g.f.: (1/2) - (1/2)*(5 - 4*exp(x))^(1/2).
|
|
13
|
|
|
0, 1, 3, 19, 207, 3211, 64383, 1581259, 45948927, 1541641771, 58645296063, 2494091717899, 117258952478847, 6038838138717931, 338082244882740543, 20443414320405268939, 1327850160592214291967, 92200405122521276427691, 6815359767190023358085823, 534337135055010788022858379
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Previous name was: A simple grammar.
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: (1/2) - (1/2)*(5 - 4*exp(x))^(1/2).
a(n) = 1 + Sum_{k=1..n-1} binomial(n,k)*a(k)*a(n-k). - Vladeta Jovovic, Feb 02 2005
a(n) ~ sqrt(5/2)/2 * n^(n-1) / (exp(n)*(log(5/4))^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
|
|
MAPLE
|
spec := [S, {C=Set(Z, 1 <= card), S=Prod(B, C), B=Sequence(S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
|
|
MATHEMATICA
|
CoefficientList[Series[1/2-1/2*(5-4*E^x)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
a[n_] := Sum[k! StirlingS2[n, k] CatalanNumber[k - 1], {k, 1, n}];
|
|
PROG
|
(PARI) N=66; x='x+O('x^N);
concat([0], Vec(serlaplace(serreverse(log(1+x-x^2)))))
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = 1+ sum(k=1, n-1, binomial(n, k)*va[k]*va[n-k]); ); concat(0, va); } \\ Michel Marcus, Apr 30 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|