login
A052883
Expansion of e.g.f.: log((-1+x)/(-1+2*x))^2.
1
0, 0, 2, 18, 166, 1740, 20948, 287784, 4466712, 77539680, 1491571872, 31532466240, 727281881280, 18184495230720, 490130371249920, 14170353892047360, 437524311352665600, 14370793956158976000
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
LINKS
FORMULA
E.g.f.: log((-1+x)/(-1+2*x))^2
Recurrence: {a(1)=0, a(0)=0, a(2)=2, (8*n+20*n^2+16*n^3+4*n^4)*a(n)+(-36-78*n-12*n^3-54*n^2)*a(n+1)+(52+13*n^2+52*n)*a(n+2)+(-6*n-15)*a(n+3)+a(n+4), a(3)=18}
a(n) ~ (n-1)! * 2^(n+1)* (log(n) + gamma - log(2)), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 29 2013
MAPLE
spec := [S, {B=Cycle(C), C=Sequence(Z, 1 <= card), S=Prod(B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[Log[(-1+x)/(-1+2*x)]^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0], Vec(serlaplace(log((-1+x)/(-1+ 2*x))^2))) \\ G. C. Greubel, Sep 05 2018
CROSSREFS
Sequence in context: A037728 A037623 A052865 * A052665 A259880 A364524
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Joerg Arndt, Sep 30 2013
STATUS
approved