login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052885
E.g.f. A(x) is inverse to F(x) = x*exp(-x)/(1+x).
7
0, 1, 4, 33, 424, 7445, 166176, 4505053, 143787904, 5282091081, 219531404800, 10184792907641, 521761503753216, 29254578504622237, 1781920872844693504, 117169936148978011125, 8272258025961978167296
OFFSET
0,3
LINKS
I. Mezo, A. Baricz, On the generalization of the Lambert W function with applications in theoretical physics, arXiv preprint arXiv:1408.3999 [math.CA], 2014-2015.
FORMULA
E.g.f.: RootOf(exp(_Z)*x*_Z+exp(_Z)*x-_Z).
E.g.f. A(x) = sum(n>0, a(n)*x^n/n!) is inverse to F(x)=x*exp(-x)/(1+x), a(n)=(n-1)!*sum_{i=0..n-1} (n^(n-i-1)*binomial(n,i))/(n-i-1)!, n>0. - Vladimir Kruchinin, Jan 31 2012
a(n) ~ 5^(-1/4) * ((3+sqrt(5))/2)^n * exp((sqrt(5)-3)*n/2) * n^(n-1). - Vaclav Kotesovec, Jan 23 2014
MAPLE
spec := [S, {B=Prod(Z, C), C=Set(S), S=Sequence(B, 1<= card)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[InverseSeries[Series[x/(E^x*(1+x)), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2014 *)
PROG
(Maxima) a(n):=((n-1)!*sum((n^(n-i-1)*binomial(n, i))/(n-i-1)!, i, 0, n-1)); /* Vladimir Kruchinin, Jan 31 2012 */
CROSSREFS
Sequence in context: A111534 A162655 A216135 * A277184 A192548 A119821
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved