The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216135 E.g.f. A(x) satisfies: A(x)^A(x) = 1/(1 - x*A(x)^2). 9
 1, 1, 4, 33, 424, 7440, 165846, 4487966, 142930376, 5237697744, 217106129040, 10043789510832, 513016686849624, 28676264198255856, 1741205465305623240, 114124985340571809480, 8030944551164700156096, 603905270121593669417472, 48328182913534662635924544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, if G(x) = 1/(1 - x*G(x)^p)^(G(x)^q), then [x^n/n! ] G(x)^m = Sum_{k=0..n} m*(p*n+q*k+m)^(k-1) * (-1)^(n-k)*Stirling1(n,k), and [x^n/n! ] log(G(x)) = Sum_{k=1..n} (p*n+q*k)^(k-1) * (-1)^(n-k)*Stirling1(n,k). Generally, if e.g.f. A(x) satisfies A(x)^A(x) = 1/(1-x*A(x)^p), then a(n) ~ s*sqrt((s^s-1)/(p*(s^s-1)*(p*s^s-1)-s)) * n^(n-1) * (s^(p+s)/(s^s-1))^n / exp(n), where s is the root of the equation (1+log(s))*s = (s^s-1)*p. - Vaclav Kotesovec, Dec 28 2013 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..357 FORMULA (1) a(n) = Sum_{k=0..n} (2*n-k+1)^(k-1)* (-1)^(n-k)* Stirling1(n,k). Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then (2) a(n,m) = Sum_{k=0..n} m*(2*n-k+m)^(k-1) * (-1)^(n-k) *Stirling1(n,k) ; which is equivalent to the following: (3) a(n,m) = Sum_{k=0..n} m*(2*n-k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1+j*x)}; (4) a(n,m) = n!*Sum_{k=0..n} m*(2*n-k+m)^(k-1) * {[x^(n-k)] (-log(1-x)/x)^k/k!}. Limit n->infinity a(n)^(1/n)/n = exp(2*(1-r)/(r-2))*(2-r+exp(r/(2-r))) = 1.7802115440907..., where r = 0.655269699533064... is the root of the equation exp(r/(2-r)) = (r-2)/r*(r + LambertW(-1,-r*exp(-r)). - Vaclav Kotesovec, Sep 17 2013 a(n) ~ s*sqrt((s^s-1)/(2*(s^s-1)*(2*s^s-1)-s)) * n^(n-1) * (s^(2+s)/(s^s-1))^n / exp(n), where s = 1.627893875694537903318580987... is the root of the equation (1+log(s))*s = 2*(s^s-1). - Vaclav Kotesovec, Dec 28 2013 EXAMPLE E.g.f. A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 424*x^4/4! + 7440*x^5/5! +... where A(x)^A(x) = 1 + x + 6*x^2/2! + 60*x^3/3! + 864*x^4/4! + 16360*x^5/5! +... 1/(1-x*A(x)^2) = 1 + x + 6*x^2/2! + 60*x^3/3! + 864*x^4/4! + 16360*x^5/5! +... MATHEMATICA Table[Sum[(2*n-k+1)^(k-1)*(-1)^(n-k)*StirlingS1[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 17 2013 *) PROG (PARI) a(n, m=1)=sum(k=0, n, m*(2*n-k+m)^(k-1)*(-1)^(n-k)*stirling(n, k, 1)); for(n=0, 21, print1(a(n), ", ")) (PARI) {a(n, m=1)=sum(k=0, n, m*(2*n-k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1+j*x), n-k))} for(n=0, 21, print1(a(n), ", ")) (PARI) {a(n)=local(A=1+x); for(i=0, n, A=exp(-log(1-x*(A^2+x*O(x^n)))/A)); n!*polcoeff(A, n)} for(n=0, 21, print1(a(n), ", ")) CROSSREFS Cf. A141209, A216136, A229237. Sequence in context: A360234 A111534 A162655 * A052885 A277184 A192548 Adjacent sequences: A216132 A216133 A216134 * A216136 A216137 A216138 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 22:36 EDT 2024. Contains 372954 sequences. (Running on oeis4.)